Legendre and Laguerre polynomial approach for modeling of wave propagation in layered magneto-electro-elastic media

被引:0
|
作者
机构
[1] Bou Matar, Olivier
[2] Gasmi, Noura
[3] Zhou, Huan
[4] Goueygou, Marc
[5] Talbi, Abdelkrim
来源
Bou Matar, O. (olivier.boumatar@iemn.univ-lille1.fr) | 1600年 / Acoustical Society of America卷 / 133期
关键词
Polynomials - Wave propagation - Eigenvalues and eigenfunctions - Numerical methods;
D O I
暂无
中图分类号
学科分类号
摘要
A numerical method to compute propagation constants and mode shapes of elastic waves in layered piezoelectric-piezomagnetic composites, potentially deposited on a substrate, is described. The basic feature of the method is the expansion of particle displacement, stress fields, electric and magnetic potentials in each layer on different polynomial bases: Legendre for a layer of finite thickness and Laguerre for the semi-infinite substrate. The exponential convergence rate of the method for propagation of Love waves is numerically verified. The main advantage of the method is to directly determine complex wave numbers for a given frequency via a matricial eigenvalue problem, in a way that no transcendental equation has to be solved. Results are presented and the method is discussed. © 2013 Acoustical Society of America.
引用
收藏
相关论文
共 50 条
  • [31] Surface gap wave propagation in layered electro-magneto-elastic structures
    Danoyan, Z.
    Ghazaryan, K.
    Piliposian, G.
    WAVES IN RANDOM AND COMPLEX MEDIA, 2009, 19 (03) : 521 - 534
  • [32] Eringen's nonlocal elasticity theory for wave propagation analysis of magneto-electro-elastic nanotubes
    Ebrahimi, Farzad
    Dehghan, M.
    Seyfi, Ali
    ADVANCES IN NANO RESEARCH, 2019, 7 (01) : 1 - 11
  • [33] Wave propagation characteristics in magneto-electro-elastic nanoshells using nonlocal strain gradient theory
    Ma, L. H.
    Ke, L. L.
    Reddy, J. N.
    Yang, J.
    Kitipornchai, S.
    Wang, Y. S.
    COMPOSITE STRUCTURES, 2018, 199 : 10 - 23
  • [34] SH WAVE PROPAGATION ALONG A PERIODIC GRATING SURFACE WITH GROOVES IN A MAGNETO-ELECTRO-ELASTIC SUBSTRATE
    Ge, Tai
    Pang, Yu
    Feng, Wen-jie
    Zhang, Chuan-zeng
    PROCEEDINGS OF 2016 SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES, AND DEVICE APPLICATIONS (SPAWDA), 2016, : 222 - 226
  • [35] Dynamic asymptotic homogenization for wave propagation in magneto-electro-elastic laminated composite periodic structure
    Chaki, Mriganka Shekhar
    Bravo-Castillero, Julian
    COMPOSITE STRUCTURES, 2023, 322
  • [36] Propagation of SH Wave in a Rotating Functionally Graded Magneto-Electro-Elastic Structure with Imperfect Interface
    Hemalatha, K.
    Kumar, S.
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2024, 12 (07) : 8383 - 8397
  • [37] Periodic limited permeable cracks in magneto-electro-elastic media
    O. Viun
    F. Labesse-Jied
    R. Moutou-Pitti
    V. Loboda
    Y. Lapusta
    Acta Mechanica, 2015, 226 : 2225 - 2233
  • [38] Dispersion relations for SH wave in magneto-electro-elastic heterostructures
    Calas, H.
    Otero, J. A.
    Rodriguez-Ramos, R.
    Monsivais, G.
    Stern, C.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2008, 45 (20) : 5356 - 5367
  • [39] Periodic limited permeable cracks in magneto-electro-elastic media
    Viun, O.
    Labesse-Jied, F.
    Moutou-Pitti, R.
    Loboda, V.
    Lapusta, Y.
    ACTA MECHANICA, 2015, 226 (07) : 2225 - 2233
  • [40] Exact solution for functionally graded and layered magneto-electro-elastic plates
    Pan, E
    Han, F
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2005, 43 (3-4) : 321 - 339