Growth of two-dimensional covalent organic frameworks on substrates: insight from microsecond atomistic simulations

被引:0
|
作者
Wang, Zilin [1 ,2 ]
Du, Hong [1 ,2 ]
Evans, Austin M. [3 ]
Ni, Xiaojuan [4 ]
Bredas, Jean-Luc [4 ]
Li, Haoyuan [1 ,2 ]
机构
[1] Shanghai Univ, Sch Microelect, Shanghai 201800, Peoples R China
[2] Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200444, Peoples R China
[3] Univ Florida, Dept Chem, George & Josephine Butler Polymer Lab, Gainesville, FL 32611 USA
[4] Univ Arizona, Dept Chem & Biochem, Tucson, AZ 85721 USA
基金
中国国家自然科学基金;
关键词
THIN-FILMS; POLYMERIZATION; SURFACES; METALS; CRYSTALLINE; ADSORPTION; NUCLEATION; DYNAMICS;
D O I
10.1039/d4sc05168h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
While growing two-dimensional covalent organic frameworks (2D COFs) on substrates holds promise for producing functional monolayers, the presence of many defects in the resulting crystals often hinders their practical applications. Achieving structural order while suppressing defect formation necessitates a detailed atomic-level understanding. The key lies in understanding the polymerization process with high nano-scale accuracy, which presents significant challenges. Here, we perform microsecond atomistic molecular dynamics simulations to describe the deposition and polymerization of cyclohexa-m-phenylene on metal substrates, closely mimicking experimental conditions. Our improved approach highlights that 2D polymerization occurs through monomer addition and island coalescence, with a pre-bonding stage allowing monomers/oligomers to dynamically adjust their configurations to the expanding island structures. Our results elucidate the mechanisms underlying the formation of vacancy and dislocation defects during 2D polymerization as well as their healing processes. Overall, our findings underscore the significant roles that high surface mobility, effective monomer-substrate anchoring, high framework rigidity, moderate monomer coordination, and low bonding rate play in forming large, extended 2D crystals while suppressing vacancy and dislocation defects. We demonstrate how these factors can be tuned through substrate selection, deposition rate modulation, and temperature control, thereby offering valuable insight for strategically optimizing on-surface 2D polymerizations. Microsecond atomistic simulations reveal the complex interplay among monomer mobility and coordination, monomer-substrate anchoring, framework rigidity, and bonding rates in polymerization on metal surfaces.
引用
收藏
页码:17629 / 17641
页数:13
相关论文
共 50 条
  • [31] Trends in the thermal stability of two-dimensional covalent organic frameworks
    Evans, Austin M.
    Ryder, Matthew R.
    Ji, Woojung
    Strauss, Michael J.
    Corcos, Amanda R.
    Vitaku, Edon
    Flanders, Nathan C.
    Bisbey, Ryan P.
    Dichtel, William R.
    FARADAY DISCUSSIONS, 2021, 225 (00) : 226 - 240
  • [32] Electronic and optical properties of two-dimensional covalent organic frameworks
    Zhou, Yungang
    Wang, Zhiguo
    Yang, Ping
    Zu, Xiaotao
    Gao, Fei
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (33) : 16964 - 16970
  • [33] Two-dimensional Covalent Organic Frameworks: Tessellation by Synthetic Art
    Wang Lu
    Wang Dong
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2022, 38 (02) : 265 - 274
  • [34] Two-dimensional Covalent Organic Frameworks: Tessellation by Synthetic Art
    Lu Wang
    Dong Wang
    Chemical Research in Chinese Universities, 2022, 38 : 265 - 274
  • [35] Two-Dimensional Covalent Organic Frameworks for Optoelectronics and Energy Storage
    Mandal, Amal Kumar
    Mahmood, Javeed
    Baek, Jong-Beom
    CHEMNANOMAT, 2017, 3 (06): : 373 - 391
  • [36] Synthesis of Two-Dimensional Covalent Organic Frameworks in Ionic Liquids
    Gao, Yanan
    Wang, Chang
    Hu, Hui
    Ge, Rile
    Lu, Meihuan
    Zhang, Jianqiang
    Li, Zhongping
    Shao, Pengpeng
    Jiang, Donglin
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (68) : 15488 - 15492
  • [37] Exceptional electron conduction in two-dimensional covalent organic frameworks
    Jin, Enquan
    Geng, Keyu
    Fu, Shuai
    Yang, Sheng
    Kanlayakan, Narissa
    Addicoat, Matthew A.
    Kungwan, Nawee
    Geurs, Johannes
    Xu, Hong
    Bonn, Mischa
    Wang, Hai, I
    Smet, Jurgen
    Kowalczyk, Tim
    Jiang, Donglin
    CHEM, 2021, 7 (12): : 3309 - 3324
  • [38] Improved synthesis and properties of two-dimensional covalent organic frameworks
    Dichtel, William
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [39] Star-shaped two-dimensional covalent organic frameworks
    Feng, Xiao
    Dong, Yuping
    Jiang, Donglin
    CRYSTENGCOMM, 2013, 15 (08): : 1508 - 1511
  • [40] Electronic Structure of Two-Dimensional π-Conjugated Covalent Organic Frameworks
    Thomas, Simil
    Li, Hong
    Zhong, Cheng
    Matsumoto, Michio
    Dichtel, William R.
    Bredas, Jean-Luc
    CHEMISTRY OF MATERIALS, 2019, 31 (09) : 3051 - 3065