DAG-Net: Dual-Branch Attention-Guided Network for Multi-Scale Information Fusion in Lung Nodule Segmentation

被引:0
|
作者
Zhang, Bojie [1 ]
Zhu, Hongqing [1 ]
Wang, Ziying [1 ]
Luo, Lan [2 ]
Yu, Yang [1 ]
机构
[1] East China Univ Sci & Technol, Sch Informat Sci & Engn, Shanghai, Peoples R China
[2] Univ Shanghai Sci & Technol, Sch Hlth Sci & Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
attention-guided; dual-branch; lung nodule segmentation; multi-scale fusion; texture information; PULMONARY NODULES;
D O I
10.1002/ima.23209
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The development of deep learning has played an increasingly crucial role in assisting medical diagnoses. Lung cancer, as a major disease threatening human health, benefits significantly from the use of auxiliary medical systems to assist in segmenting pulmonary nodules. This approach effectively enhances both the accuracy and speed of diagnosis for physicians, thereby reducing the risk of patient mortality. However, pulmonary nodules are characterized by irregular shapes and a wide range of diameter variations. They often reside amidst blood vessels and various tissue structures, posing significant challenges in designing an automated system for lung nodule segmentation. To address this, we have developed a three-dimensional dual-branch attention-guided network (DAG-Net) for multi-scale information fusion, aimed at segmenting lung nodules of various types and sizes. First, a dual-branch encoding structure is employed to provide the network with prior knowledge about nodule texture information, which aids the network in better identifying different types of lung nodules. Next, we designed a structure to extract global information, which enhances the network's ability to localize lung nodules of different sizes by fusing information from multiple resolutions. Following that, we fused multi-scale information in a parallel structure and used attention mechanisms to guide the network in suppressing the influence of non-nodule regions. Finally, we employed an attention-based structure to guide the network in achieving more accurate segmentation by progressively using high-level semantic information at each layer. Our proposed network achieved a DSC value of 85.6% on the LUNA16 dataset, outperforming state-of-the-art methods, demonstrating the effectiveness of the network.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] ADINet: Attention-guided dual-branch integration network for atypical visual saliency prediction
    Wang, Qi
    Zhou, Xiaofei
    Zhu, Zunjie
    Zhang, Jiyong
    Yan, Chenggang
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (02)
  • [22] Multi-scale feature fusion network with local attention for lung segmentation
    Xie, Yinghua
    Zhou, Yuntong
    Wang, Chen
    Ma, Yanshan
    Yang, Ming
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 119
  • [23] SRMA: a dual-branch parallel multi-scale attention network for remote sensing images sea-land segmentation
    Zhu, Ye
    Wang, Bo
    Liu, Qi
    Tan, Shihan
    Wang, Shengjie
    Ge, Wenyi
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (10) : 3370 - 3395
  • [24] DMFusion: A dual-branch multi-scale feature fusion network for medical multi-modal image fusion
    Ma, Gengchen
    Qiu, Xihe
    Tan, Xiaoyu
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 105
  • [25] Attention-guided multi-scale context aggregation network for multi-modal brain glioma segmentation
    Wu, Shaozhi
    Cao, Yunjian
    Li, Xinke
    Liu, Qiyu
    Ye, Yuyun
    Liu, Xingang
    Zeng, Liaoyuan
    Tian, Miao
    MEDICAL PHYSICS, 2023, 50 (12) : 7629 - 7640
  • [26] MSDRA-NET: A MULTI-SCALE ATTENTION-GUIDED NETWORK FOR MAGNETIC RESONANCE IMAGE RESTORATION
    You, Xuexiao
    Cao, Ning
    Wang, Wei
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2024, 24 (02)
  • [27] MDCF-Net: Multi-Scale Dual-Branch Network for Compressed Face Forgery Detection
    Zhou, Jiting
    Zhao, Xinrui
    Xu, Qian
    Zhang, Pu
    Zhou, Zhihao
    IEEE ACCESS, 2024, 12 : 58740 - 58749
  • [28] A Novel Multi-Scale Channel Attention-Guided Neural Network for Brain Stroke Lesion Segmentation
    Li, Zhihua
    Xing, Qiwei
    Li, Yanfang
    He, Wei
    Miao, Yu
    Ji, Bai
    Shi, Weili
    Jiang, Zhengang
    IEEE ACCESS, 2023, 11 (66050-66062) : 66050 - 66062
  • [29] Crowd counting based on attention-guided multi-scale fusion networks
    Zhang, Bo
    Wang, Naiyao
    Zhao, Zheng
    Abraham, Ajith
    Liu, Hongbo
    NEUROCOMPUTING, 2021, 451 : 12 - 24
  • [30] Coarse-to-fine multi-scale attention-guided network for multi-exposure image fusion
    Hao Zhao
    Jingrun Zheng
    Xiaoke Shang
    Wei Zhong
    Jinyuan Liu
    The Visual Computer, 2024, 40 : 1697 - 1710