Spatiotemporal analysis of PM2.5 in large coastal domains by combining Land Use Regression and Bayesian Maximum Entropy

被引:0
|
作者
Jiang, Qu-Tu [1 ]
He, Jun-Yu [1 ]
Wang, Zhan-Shan [2 ]
Ye, Guan-Qiong [1 ]
Chen, Qian [3 ]
Xiao, Lu [1 ]
机构
[1] Institute of Island & Coastal Ecosystems, Zhejiang University, Zhoushan,316021, China
[2] Beijing Municipal Environmental Monitoring Center, Beijing,100048, China
[3] School of Geographic and Environment, Jiangxi Normal University, Nanchang,330022, China
关键词
Average concentration - Bayesian maximum entropies - Human exposures - Land use regression - Normalized difference vegetation index - PM2.5 - Root mean square errors - Spatiotemporal analysis;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:424 / 431
相关论文
共 50 条
  • [41] Combined use of land use regression and BenMAP for estimating public health benefits of reducing PM2.5 in Tianjin, China
    Chen, Li
    Shi, Mengshuang
    Li, Suhuan
    Bai, Zhipeng
    Wang, Zhongliang
    ATMOSPHERIC ENVIRONMENT, 2017, 152 : 16 - 23
  • [42] Effects of land-use patterns on PM2.5 in China's developed coastal region: Exploration and solutions
    Lin, Yifan
    Yuan, Xinyi
    Zhai, Tianlin
    Wang, Jing
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 703 (703)
  • [43] A hybrid kriging/land-use regression model to assess PM2.5 spatial-temporal variability
    Wu, Chih-Da
    Zeng, Yu-Ting
    Lung, Shih-Chun Candice
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 645 : 1456 - 1464
  • [44] Predicting regional space–time variation of PM2.5 with land-use regression model and MODIS data
    Liang Mao
    Youliang Qiu
    Claudia Kusano
    Xiaohui Xu
    Environmental Science and Pollution Research, 2012, 19 : 128 - 138
  • [45] Agreement of central site measurements and land use regression modeled oxidative potential of PM2.5 with personal exposure
    Yang, Aileen
    Hoek, Gerard
    Montagne, Denise
    Leseman, Daan L. A. C.
    Hellack, Bryan
    Kuhlbusch, Thomas A. J.
    Cassee, Flemming R.
    Brunekreef, Bert
    Janssen, Nicole A. H.
    ENVIRONMENTAL RESEARCH, 2015, 140 : 397 - 404
  • [46] High Temporal Resolution Land Use Regression Models with POI Characteristics of the PM2.5 Distribution in Beijing, China
    Zhang, Yan
    Cheng, Hongguang
    Huang, Di
    Fu, Chunbao
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (11)
  • [47] Self-Adaptive Revised Land Use Regression Models for Estimating PM2.5 Concentrations in Beijing, China
    Hu, Lujin
    Liu, Jiping
    He, Zongyi
    SUSTAINABILITY, 2016, 8 (08):
  • [48] A hybrid prediction model for PM2.5 mass and components using a chemical transport model and land use regression
    Di, Qian
    Koutrakis, Petros
    Schwartz, Joel
    ATMOSPHERIC ENVIRONMENT, 2016, 131 : 390 - 399
  • [49] Spatiotemporal estimation of the PM2.5 concentration and human health risks combining the three-dimensional landscape pattern index and machine learning methods to optimize land use regression modeling in Shaanxi, China
    Zhang, Ping
    Yang, Lianwei
    Ma, Wenjie
    Wang, Ning
    Wen, Feng
    Liu, Qi
    ENVIRONMENTAL RESEARCH, 2022, 208
  • [50] Optimization of PM2.5 Estimation Using Landscape Pattern Information and Land Use Regression Model in Zhejiang, China
    Yang, Shan
    Wu, Haitian
    Chen, Jian
    Lin, Xintao
    Lu, Ting
    ATMOSPHERE, 2018, 9 (02)