Identifications of novel host cell factors that interact with the receptor-binding domain of the SARS-CoV-2 spike protein

被引:3
|
作者
Tang, Xiao [1 ,2 ,3 ]
Liu, Yang [2 ,3 ]
Wang, Jinhui [2 ,3 ]
Long, Teng [4 ,5 ]
Mok, Bobo Wing Yee [4 ,5 ]
Huang, Yan [2 ,3 ]
Peng, Ziqing [2 ,3 ]
Jia, Qinyu [6 ,7 ]
Liu, Chengxi [6 ,7 ]
So, Pui-Kin [6 ,7 ]
Tse, Sirius Pui-Kam [6 ,7 ]
Liu, Shiyi [8 ]
Sun, Fei [9 ]
Tang, Shaojun [8 ]
Yao, Zhong-Ping [6 ]
Chen, Honglin [4 ,5 ]
Guo, Yusong [2 ,3 ,10 ]
机构
[1] Anhui Normal Univ, Coll Life Sci, Anhui Prov Key Lab Mol Enzymol & Mech Major Metab, Wuhu, Peoples R China
[2] Hong Kong Univ Sci & Technol, Div Life Sci, Hong Kong, Peoples R China
[3] Hong Kong Univ Sci & Technol, State Key Lab Mol Neurosci, Hong Kong, Peoples R China
[4] Univ Hong Kong, Dept Microbiol, Hong Kong, Peoples R China
[5] Univ Hong Kong, Ctr Virol Vaccinol & Therapeut Ltd, Pokfulam, Hong Kong, Peoples R China
[6] Hong Kong Polytech Univ, Res Inst Future Food, Res Ctr Chinese Med Innovat, State Key Lab Chem Biol & Drug Discovery,Kowloon, Hong Kong, Peoples R China
[7] Hong Kong Polytech Univ, Dept Appl Biol & Chem Technol, Kowloon, Hong Kong, Peoples R China
[8] Hong Kong Univ Sci & Technol Guangzhou, Thrust Biosci & Biomed Engn, Guangzhou, Peoples R China
[9] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Hong Kong, Peoples R China
[10] Hong Kong Univ Sci & Technol, Shenzhen Res Inst, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
ENTRY; ADAM9;
D O I
10.1016/j.jbc.2024.107390
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
SARS-CoV-2 entry into host cells is facilitated by the interaction between the receptor-binding domain of its spike protein (CoV2-RBD) and host cell receptor, ACE2, promoting viral membrane fusion. The virus also uses endocytic pathways for entry, but the mediating host factors remain largely unknown. It is also unknown whether mutations in the RBD of SARSCoV-2 variants promote interactions with additional host factors to promote viral entry. Here, we used the GST pull-down approach to identify novel surface-located host factors that bind to CoV2-RBD. One of these factors, SH3BP4, regulates internalization of CoV2-RBD in an ACE2-independent but integrin- and clathrin-dependent manner and mediates SARSCoV-2 pseudovirus entry, suggesting that SH3BP4 promotes viral entry via the endocytic route. Many of the identified factors, including SH3BP4, ADAM9, and TMEM2, show stronger affinity to CoV2-RBD than to RBD of the less infective SARS-CoV, suggesting SARS-CoV-2-specific utilization. We also found factors preferentially binding to the RBD of the SARS-CoV-2 Delta variant, potentially enhancing its entry. These data identify the repertoire of host cell surface factors that function in the events leading to the entry of SARS-CoV-2.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Conformational Dynamics of the Receptor-Binding Domain of the SARS-CoV-2 Spike Protein
    Mamchur, Aleksandra A.
    Stanishneva-Konovalova, Tatiana B.
    Mokrushina, Yuliana A.
    Abrikosova, Viktoria A.
    Guo, Yu
    Zhang, Hongkai
    Terekhov, Stanislav S.
    Smirnov, Ivan V.
    Yaroshevich, Igor A.
    BIOMEDICINES, 2022, 10 (12)
  • [2] Mutation informatics: SARS-CoV-2 receptor-binding domain of the spike protein
    Verma, Saroj
    Patil, Vaishali M.
    Gupta, Manish K.
    DRUG DISCOVERY TODAY, 2022, 27 (10)
  • [3] A Novel Conserved Linear Neutralizing Epitope on the Receptor-Binding Domain of the SARS-CoV-2 Spike Protein
    Hua, Rong-Hong
    Zhang, Shu-Jian
    Niu, Bei
    Ge, Jin-Ying
    Lan, Ting
    Bu, Zhi-Gao
    MICROBIOLOGY SPECTRUM, 2023, 11 (04):
  • [4] Fixation and reversion of mutations in the receptor-binding domain of SARS-CoV-2 spike protein
    Focosi, Daniele
    Spezia, Pietro Giorgio
    Maggi, Fabrizio
    DIAGNOSTIC MICROBIOLOGY AND INFECTIOUS DISEASE, 2024, 108 (02)
  • [5] Amino acid interacting network in the receptor-binding domain of SARS-CoV-2 spike protein
    Adhikari, Puja
    Ching, Wai-Yim
    RSC ADVANCES, 2020, 10 (65) : 39831 - 39841
  • [6] Display of receptor-binding domain of SARS-CoV-2 Spike protein variants on the Saccharomyces cerevisiae cell surface
    Xing, Hongguan
    Zhu, Liyan
    Wang, Pingping
    Zhao, Guoping
    Zhou, Zhihua
    Yang, Yi
    Zou, Hong
    Yan, Xing
    FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [7] A Fungal Defensin Targets the SARS-CoV-2 Spike Receptor-Binding Domain
    Gao, Bin
    Zhu, Shunyi
    JOURNAL OF FUNGI, 2021, 7 (07)
  • [8] Total Chemical Synthesis of the SARS-CoV-2 Spike Receptor-Binding Domain
    Kar, Abhisek
    Jana, Mrinmoy
    Malik, Vishal
    Sarkar, Arighna
    Mandal, Kalyaneswar
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (03)
  • [9] Receptor-binding domain of SARS-CoV-2 spike protein efficiently inhibits SARS-CoV-2 infection and attachment to mouse lung
    Shin, Hye Jin
    Ku, Keun Bon
    Kim, Hae Soo
    Moon, Hyun Woo
    Jeong, Gi Uk
    Hwang, Insu
    Yoon, Gun Young
    Lee, Sunhee
    Lee, Sumin
    Ahn, Dae-Gyun
    Kim, Kyun-Do
    Kwon, Young-Chan
    Kim, Bum-Tae
    Kim, Seong-Jun
    Kim, Chonsaeng
    INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2021, 17 (14): : 3786 - 3794
  • [10] SINGLE-DOMAIN ANTIBODY FOR BINDING THE CONSERVED EPITOPE IN THE SARS-COV-2 SPIKE PROTEIN RECEPTOR-BINDING DOMAIN
    Po, P. O.
    Tillib, S., V
    BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY, 2023, (01): : 12 - 20