Analytical Analysis of Whole Loading Process of Ultra-High-Performance Fiber-Reinforced Concrete Beams in Flexure

被引:0
|
作者
Hao, Xin-Kai [1 ,2 ]
Jin, Chao [3 ]
Xu, Bin [1 ]
Zheng, Jian-Jun [2 ]
机构
[1] Northwestern Polytech Univ, Inst Vibrat Engn, Xian, Shaanxi, Peoples R China
[2] Zhejiang Univ Technol, Sch Civil Engn, Hangzhou, Zhejiang, Peoples R China
[3] Ningbo Jiangong Engn Grp Co China, Ningbo, Peoples R China
基金
中国国家自然科学基金;
关键词
analytical approach; closed-form solution; flexural load; stress block; ultra-high-performance fiber-reinforced concrete (UHPFRC) beam; BEHAVIOR; UHPC;
D O I
10.14359/51742140
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The mechanical and durability properties of ultra-high-performance fiber-reinforced concrete (UHPFRC) are superior to conventional are relatively complicated and cannot be applied to the analytical analysis of loaded beams for the ultimate and serviceability limit states. In this paper, a piecewise linear axial stress-strain relationship is proposed. The stress-strain relationship is further simplified as a rectangular stress block, and the stress of concrete during the whole loading process is accordingly evaluated. The development of the beam hinge at the midspan is described in detail, and it is then incorporated into the concrete stress blocks to derive an analytical approach and a closed-form solution for modeling the whole loading process of UHPFRC beams. Through comparisons with experimental results collected from the literature, it is validated that the proposed approaches can reasonably predict the whole loading process, including the ultimate strength, flexural rigidity, and ductility of UHPFRC beams, which only require material properties without any experimental calibration.
引用
收藏
页码:61 / 74
页数:14
相关论文
共 50 条
  • [41] Laboratory Investigation of Ultra-High-Performance Fiber-Reinforced Concrete Modified with Nanomaterials
    Zeinolabedini, Afsaneh
    Tanzadeh, Javad
    Mamodan, Mitra Talebi
    JOURNAL OF TESTING AND EVALUATION, 2021, 49 (01) : 661 - 674
  • [42] Mechanical properties of ultra-high-performance fiber-reinforced concrete at cryogenic temperatures
    Kim, Min-Jae
    Kim, Soonho
    Lee, Seul-Kee
    Kim, Jun-Hwi
    Lee, Kangwon
    Yoo, Doo-Yeol
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 157 : 498 - 508
  • [43] Properties of Ultra-High-Performance Fiber-Reinforced Concrete (UHPFRC) -A Review Paper
    Tayeh, Bassam A.
    Aadi, Ayad S.
    Hilal, Nahla N.
    Abu Bakar, B. H.
    Al-Tayeb, Mustafa Maher
    Mansour, Walid N.
    INTERNATIONAL SYMPOSIUM GREEN AND SUSTAINABLE TECHNOLOGY (ISGST2019), 2019, 2157
  • [44] Effectiveness of steel fibers in ultra-high-performance fiber-reinforced concrete construction
    Dadmand, Behrooz
    Pourbaba, Masoud
    Sadaghian, Hamed
    Mirmiran, Amir
    ADVANCES IN CONCRETE CONSTRUCTION, 2020, 10 (03) : 195 - 209
  • [45] Flexural capacity of reinforced concrete slabs retrofitted with ultra-high-performance concrete and fiber-reinforced polymer
    Hoang, Viet Hai
    Do, Tu Anh
    Tran, Anh Tuan
    Nguyen, Xuan Huy
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2024, 9 (04)
  • [46] Flexural capacity of reinforced concrete slabs retrofitted with ultra-high-performance concrete and fiber-reinforced polymer
    Viet Hai Hoang
    Tu Anh Do
    Anh Tuan Tran
    Xuan Huy Nguyen
    Innovative Infrastructure Solutions, 2024, 9
  • [47] A Comprehensive Review of Retrofitted Reinforced Concrete Members Utilizing Ultra-High-Performance Fiber-Reinforced Concrete
    Saeed, Firas Hassan
    Hejazi, Farzad
    MATERIALS, 2025, 18 (05)
  • [48] Fracture energy of ultra-high-performance fiber-reinforced concrete at high strain rates
    Ngoc Thanh Tran
    Tuan Kiet Tran
    Jeon, Joong Kyu
    Park, Jun Kil
    Kim, Dong Joo
    CEMENT AND CONCRETE RESEARCH, 2016, 79 : 169 - 184
  • [49] Experimental Study on the Flexural Behavior of Lap-Spliced Ultra-High-Performance Fiber-Reinforced Concrete Beams
    Bae, Baek-Il
    Choi, Hyun-Ki
    POLYMERS, 2022, 14 (11)
  • [50] Shear behavior of ultra-high-performance concrete beams prestressed with external carbon fiber-reinforced polymer tendons
    Li JIA
    Zhi FANG
    Maurizio GUADAGNINI
    Kypros PILAKOUTAS
    Zhengmeng HUANG
    Frontiers of Structural and Civil Engineering, 2021, (06) : 1426 - 1440