A method for constructing bivariate rational functions by Lagrange weighted interpolation

被引:0
|
作者
Jia, Bin [1 ]
Tang, Shuo [1 ]
机构
[1] School of Mathematics, Hefei University of Technology, Hefei 230009, China
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1155 / 1163
相关论文
共 50 条
  • [31] A subspace-based approach to Lagrange-Sylvester interpolation of rational matrix functions
    Akcay, Huseyin
    Turkay, Semiha
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 7102 - 7107
  • [32] ON INTERPOLATION BY RATIONAL FUNCTIONS
    BAGBY, T
    DUKE MATHEMATICAL JOURNAL, 1969, 36 (01) : 95 - &
  • [33] On interpolation of rational functions
    Walsh, JL
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1934, 198 : 1377 - 1378
  • [34] On the summability of bivariate rational functions
    Chen, Shaoshi
    Singer, Michael F.
    JOURNAL OF ALGEBRA, 2014, 409 : 320 - 343
  • [35] Bivariate composite vector valued rational interpolation
    Tan, JQ
    Tang, S
    MATHEMATICS OF COMPUTATION, 2000, 69 (232) : 1521 - 1532
  • [36] A new bivariate interpolation by rational triangular patch
    Sun, Qinghua
    Bao, Fangxun
    Zhang, Yunfeng
    Duan, Qi
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (04) : 633 - 646
  • [37] APPLICATION OF A BIVARIATE RATIONAL INTERPOLATION IN IMAGE ZOOMING
    Zhang, Yunfeng
    Gao, Shanshan
    Zhang, Caiming
    Chi, Jing
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2009, 5 (11B): : 4299 - 4307
  • [38] Lagrange interpolation and quadrature formula in rational systems
    Min, G
    JOURNAL OF APPROXIMATION THEORY, 1998, 95 (01) : 123 - 145
  • [39] Constrained univariate and bivariate rational fractal interpolation
    Reddy, K. M.
    Chand, A. K. B.
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2019, 20 (05): : 404 - 422