Parsing Penn Chinese treebank (CTB) with head-driven model

被引:0
|
作者
MOE-MS Key Laboratory of Natural Language Processing and Speech, Harbin Institute of Technology, Harbin 150001, China [1 ]
机构
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:15 / 20
相关论文
共 50 条
  • [42] A Newton-Raphson analysis of urban water systems based on nodal head-driven outflow
    Tsakiris, G.
    Spiliotis, M.
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2014, 18 (08) : 882 - 896
  • [43] The complexity of modellability in finite and computable signatures of a constraint logic for head-driven phrase structure grammar
    King P.J.
    Simov K.I.
    Aldag B.
    Journal of Logic, Language and Information, 1999, 8 (1) : 83 - 110
  • [44] Design of Chinese HPSG framework for data-driven parsing
    Wang, Xiangli
    Iwasawa, Shunya
    Miyao, Yusuke
    Matsuzaki, Takuya
    Yu, Kun
    Tsujii, Jun'ichi
    PACLIC 23 - Proceedings of the 23rd Pacific Asia Conference on Language, Information and Computation, 2009, 2 : 835 - 842
  • [45] Shallow Parsing of Chinese Based on HMM Model
    Zheng Weifa
    Xie Wenliang
    INTELLIGENCE COMPUTATION AND EVOLUTIONARY COMPUTATION, 2013, 180 : 79 - 86
  • [46] AN IMPROVED MODEL OF MST FOR CHINESE DEPENDENCY PARSING
    Zhang, Guiping
    Wang, Yan
    Ji, Duo
    2012 IEEE 2ND INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENT SYSTEMS (CCIS) VOLS 1-3, 2012, : 1454 - 1458
  • [48] A Fusion Model for Chinese Electronic Medical Record Parsing
    Jiang Z.-P.
    Guan Y.
    Zidonghua Xuebao/Acta Automatica Sinica, 2019, 45 (02): : 276 - 288
  • [49] Chinese Dependency Parsing Based on An Improved Model of MST
    Qi, Sun
    Yang, Xiang
    Xiao, Tu
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ELECTRONICS, NETWORK AND COMPUTER ENGINEERING (ICENCE 2016), 2016, 67 : 9 - 14
  • [50] Parsing model for answer extraction in Chinese Question Answering system
    Yuan, CX
    Wang, C
    Proceedings of the 2005 IEEE International Conference on Natural Language Processing and Knowledge Engineering (IEEE NLP-KE'05), 2005, : 238 - 243