The Hybrid Forecast of S&P 500 Volatility ensembled from VIX, GARCH and LSTM models

被引:0
|
作者
Roszyk, Natalia [1 ]
S´lepaczuk, Robert [2 ]
机构
[1] University of Warsaw, Faculty of Economic Sciences, Quantitative Finance Research Group, Ul. Dluga 44/50, Warsaw,00-241, Poland
[2] University of Warsaw, Faculty of Economic Sciences, Department of Quantitative Finance and Machine Learning, Quantitative Finance Research Group, Ul. Dluga 44/50, Warsaw,00-241, Poland
来源
关键词
Deep learning - Financial time series - Financial time series analyse - Forecasting models - Hybrid forecasting - Hybrid forecasting model - Hyper-parameter - Hyperparameter tuning - LSTM-GARCH - Machine-learning - S&P 500 index - Time-series analysis - VIX index - Volatility forecasting - Walk forward - Walk-forward process;
D O I
暂无
中图分类号
学科分类号
摘要
29
引用
收藏
相关论文
共 50 条
  • [31] A regime-switching Heston model for VIX and S&P 500 implied volatilities
    Papanicolaou, Andrew
    Sircar, Ronnie
    QUANTITATIVE FINANCE, 2014, 14 (10) : 1811 - 1827
  • [32] Using neural networks to forecast the S&P 100 implied volatility
    Malliaris, M
    Salchenberger, L
    NEUROCOMPUTING, 1996, 10 (02) : 183 - 195
  • [33] Comparison between volatility return intervals of the S&P 500 index and two common models
    Vodenska-Chitkushev, I.
    Wang, F. Z.
    Weber, P.
    Yamasaki, K.
    Havlin, S.
    Stanley, H. E.
    EUROPEAN PHYSICAL JOURNAL B, 2008, 61 (02): : 217 - 223
  • [34] The effectiveness of the combined use of VIX and Support Vector Machines on the prediction of S&P 500
    Rosillo, Rafael
    Giner, Javier
    de la Fuente, David
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (02): : 321 - 332
  • [35] A remark on Lin and Chang's paper 'Consistent modeling of S&P 500 and VIX derivatives'
    Cheng, Jun
    Ibraimi, Meriton
    Leippold, Markus
    Zhang, Jin E.
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2012, 36 (05): : 708 - 715
  • [36] Joint Implied Willow Tree: An Approach for Joint S&P 500/VIX Calibration
    Dong, Bing
    Xu, Wei
    Cui, Zhenyu
    JOURNAL OF FUTURES MARKETS, 2025,
  • [37] The effectiveness of the combined use of VIX and Support Vector Machines on the prediction of S&P 500
    Rafael Rosillo
    Javier Giner
    David de la Fuente
    Neural Computing and Applications, 2014, 25 : 321 - 332
  • [38] Non-linear modelling and forecasting of S&P 500 volatility
    Verhoeven, P
    Pilgram, B
    McAleer, M
    Mees, A
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2002, 59 (1-3) : 233 - 241
  • [39] Forecasting the Volatility of CSI 300 Index with a Hybrid Model of LSTM and Multiple GARCH Models
    Tian, Bu
    Yan, Tianyu
    Yin, Hong
    COMPUTATIONAL ECONOMICS, 2024,
  • [40] An enhanced LGSA-SVM for S&P 500 index forecast
    Wang, Jinxin
    Liu, Zhengyang
    Shang, Wei
    Wang, Shouyang
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 4176 - 4183