Physics-informed Neural Networks (PINN) for computational solid mechanics: Numerical frameworks and applications

被引:15
|
作者
Hu, Haoteng [1 ]
Qi, Lehua [1 ]
Chao, Xujiang [1 ]
机构
[1] Northwestern Polytech Univ, Sch Mech Engn, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Computational solid mechanics; Constitutive models; Damage and fracture mechanics; Data-driven; PARTIAL-DIFFERENTIAL-EQUATIONS; FATIGUE LIFE PREDICTION; DEEP LEARNING FRAMEWORK; MODEL; QUANTIFICATION; IDENTIFICATION; OPERATORS; FRACTURE; LAWS;
D O I
10.1016/j.tws.2024.112495
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
For solving the computational solid mechanics problems, despite significant advances have been achieved through the numerical discretization of partial differential equations (PDEs) and data-driven framework, it is still hard to seamlessly integrate imperfect, limited, sparse and noisy data into existing algorithms. Besides the expensive tasks and struggling completion of mesh-based and meshless-based solutions in complex computational domain, the high-dimensional solid mechanics problems governed by parameterized PDEs cannot be tackled. Furthermore, addressing inverse solid mechanics problems, especially with incomplete descriptions of physical laws, are often prohibitively expensive and require obscure formulations and elaborate codes. Since the physics-informed neural networks (PINN) was originally introduced by Raissi et al. in 2019, it has been recognized as effective surrogate solvers for PDEs while respecting any given laws, data, initial and boundary conditions of solid mechanics. PINN has emerged as a promising approach to mitigate the shortage of available training data, enhance model generalizability, and ensure the physical plausibility of results. The prior physics information can act as a regularization agent that constrains the space of admissible solutions to a manageable size, enabling it to quickly steer itself towards the right solution. To catch up with the latest developments of PINN in computational solid mechanics, this work summarizes the recent advances in the field. We first introduce the foundational concepts of PINN, including the framework, architecture, algorithms, code and associated software packages. We then discuss the applications of PINN in constitutive modeling and its inverse problem, identification, evaluation, and prediction of damage in solid materials and structures. Finally, we address the current capabilities and limitations of PINN in computational solid mechanics, and present perspectives on emerging opportunities and open challenges of the prevailing trends.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Deep Lyapunov-Based Physics-Informed Neural Networks (DeLb-PINN) for Adaptive Control Design
    Hart, Rebecca G.
    Patil, Omkar Sudhir
    Griffis, Emily J.
    Dixon, Warren E.
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 1511 - 1516
  • [42] DP-PINN: A Dual-Phase Training Scheme for Improving the Performance of Physics-Informed Neural Networks
    Yan, Da
    He, Ligang
    COMPUTATIONAL SCIENCE, ICCS 2024, PT I, 2024, 14832 : 19 - 32
  • [43] VT-PINN:Variable transformation improves physics-informed neural networks for approximating partial differential equations
    Zheng, Jiachun
    Yang, Yunlei
    APPLIED SOFT COMPUTING, 2024, 167
  • [44] Solving forward and inverse problems of contact mechanics using physics-informed neural networks
    Sahin, Tarik
    von Danwitz, Max
    Popp, Alexander
    ADVANCED MODELING AND SIMULATION IN ENGINEERING SCIENCES, 2024, 11 (01)
  • [45] FDM-PINN: Physics-informed neural network based on fictitious domain method
    Yang, Qihong
    Yang, Yu
    Cui, Tao
    He, Qiaolin
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (03) : 511 - 524
  • [46] Physics-informed neural networks for estimating stress transfer mechanics in single lap joints
    Sharma, Shivam
    Awasthi, Rajneesh
    Sastry, Yedlabala Sudhir
    Budarapu, Pattabhi Ramaiah
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2021, 22 (08): : 621 - 631
  • [47] On the preprocessing of physics-informed neural networks: How to better utilize data in fluid mechanics
    Xu, Shengfeng
    Dai, Yuanjun
    Yan, Chang
    Sun, Zhenxu
    Huang, Renfang
    Guo, Dilong
    Yang, Guowei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 528
  • [48] MFLP-PINN: A physics-informed neural network for multiaxial fatigue life prediction
    He, GaoYuan
    Zhao, YongXiang
    Yan, ChuLiang
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2023, 98
  • [49] Eco-PiNN: A Physics-informed Neural Network for Eco-toll Estimation
    Li, Yan
    Yang, Mingzhou
    Eagon, Matthew
    Farhadloo, Majid
    Xie, Yiqun
    Northrop, William F.
    Shelchar, Shashi
    PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 838 - 846
  • [50] STACKED NETWORKS IMPROVE PHYSICS-INFORMED TRAINING: APPLICATIONS TO NEURAL NETWORKS AND DEEP OPERATOR NETWORKS
    Howard, Amanda a.
    Murphy, Sarah h.
    Ahmed, Shady e.
    Stinis, Panos
    FOUNDATIONS OF DATA SCIENCE, 2024,