Pulsed electro-synthesized tunable crystallite sizes ZnMn2O4/Mn2O3 nanocomposite as high-performance cathode material for aqueous zinc-ion batteries

被引:0
|
作者
Saadi-motaallegh, Shabnam [1 ,2 ]
Javanbakht, Mehran [1 ,2 ]
Omidvar, Hamid [2 ,3 ]
Habibzadeh, Sajjad [4 ]
机构
[1] Department of Chemistry, Amirkabir University of Technology, Tehran,1599637111, Iran
[2] Renewable Energy Research Center, Amirkabir University of Technology, Tehran,1599637111, Iran
[3] Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran,1599637111, Iran
[4] Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology, Tehran,1599637111, Iran
来源
关键词
Cathodes - Cost effectiveness - Crystallite size - Electric discharges - Electrochemical properties - Hydrogen storage - Ions - Secondary batteries - Zinc;
D O I
暂无
中图分类号
学科分类号
摘要
Rechargeable aqueous zinc ion batteries (ZIBs) are one of the most promising candidates for large-scale energy storage, due to their high capacity, high hydrogen evolution potential, safe and cost-effective components while benefiting from the abundance of active materials. However, ZIBs still suffer from suitable cathode materials with high capacity and superior cycling stability. Herein, we study a new strategy for the synthesis of tunable crystallite sizes ZnMn2O4/Mn2O3 nanocomposite using the pulsed potential method. The effect of synthesis potential on structural, morphological, and electrochemical properties of nanocomposite was investigated via different characterization techniques. According to our results, the functional and electrochemical properties of ZnMn2O4/Mn2O3 nanocomposite are profoundly affected by the synthesis potential. The crystallite sizes of synthesized nanocomposites can be tuned from 20.2 nm to 29.3 nm, depending on the applied potential. However, the exposed surface area of nanomaterials is ranged between 50.3 m2 g−1 and 132.0 m2 g−1. The developed nanocomposite was investigated as the cathode material for aqueous zinc ion batteries. The ZnMn2O4/Mn2O3 nanocomposite exhibited an excellent discharge capacity of 216.8 mAh g−1 at 0.2 A g−1 after 200 cycles. In addition, the developed cathode showed to preserve 97.8% of its initial capacity for 2000 cycles at 2 A g−1. Apart from the high specific capacity and long cycle stability, the facile synthesis method can offer the ZnMn2O4/Mn2O3 nanocomposite as a high-performance cathode material for durable zinc ion batteries. © 2022 Elsevier B.V.
引用
收藏
相关论文
共 50 条
  • [41] Layered Ni0.22V2O5•nH2O as high-performance cathode material for aqueous zinc-ion batteries
    Wei, Min
    Luo, Wen
    Yu, Danrui
    Liang, Xiao
    Wei, Wei
    Gao, Mingrui
    Sun, Shuokun
    Zhu, Quanyao
    Liu, Guoquan
    IONICS, 2021, 27 (11) : 4801 - 4809
  • [42] A V2O3@N–C cathode material for aqueous zinc-ion batteries with boosted zinc-ion storage performance
    Huai-Zheng Ren
    Jian Zhang
    Bo Wang
    Hao Luo
    Fan Jin
    Tian-Ren Zhang
    An Ding
    Bo-Wen Cong
    Dian-Long Wang
    Rare Metals, 2022, 41 : 1605 - 1615
  • [43] Layered Ni0.22V2O5·nH2O as high-performance cathode material for aqueous zinc-ion batteries
    Min Wei
    Wen Luo
    Danrui Yu
    Xiao Liang
    Wei Wei
    Mingrui Gao
    Shuokun Sun
    Quanyao Zhu
    Guoquan Liu
    Ionics, 2021, 27 : 4801 - 4809
  • [44] Fabrication of N-doped carbon-coated MnO/ZnMn2O4 cathode materials for high-capacity aqueous zinc-ion batteries
    Huang, Tianhao
    Cheng, Mingren
    Yuan, Yuechao
    Kong, Lingjun
    Chang, Ze
    Bu, Xian-He
    DALTON TRANSACTIONS, 2023, 52 (38) : 13737 - 13744
  • [45] Regulating the kinetics of zinc-ion migration in spinel ZnMn2O4 through iron doping boosted aqueous zinc-ion storage performance
    Chen, Feiran
    Zhang, Yan
    Chen, Shuai
    Zang, Hu
    Liu, Changjiang
    Sun, Hongxia
    Geng, Baoyou
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 649 : 703 - 712
  • [46] 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries
    Shi, Minjie
    Wang, Bei
    Shen, Yi
    Jiang, Jintian
    Zhu, Wenhuan
    Su, Yanjie
    Narayanasamy, Mugilan
    Angaiah, Subramania
    Yan, Chao
    Peng, Qiang
    CHEMICAL ENGINEERING JOURNAL, 2020, 399
  • [47] Mn-containing heteropolyvanadate nanoparticles as a high-performance cathode material for aqueous zinc-ion batteries
    Xiao, Haoran
    Li, Rong
    Zhu, Limin
    Chen, Xizhuo
    Xie, Lingling
    Han, Qing
    Qiu, Xuejing
    Yi, Lanhua
    Cao, Xiaoyu
    JOURNAL OF ENERGY STORAGE, 2024, 89
  • [48] Synthesis and Optimization of ZnMn2O4 Cathode Material for Zinc-Ion Battery by Citric Acid Sol-Gel Method
    Cai, Kexing
    Luo, Shao-hua
    Cong, Jun
    Li, Kun
    Yan, Sheng-xue
    Hou, Peng-ging
    Wang, Qing
    Zhang, Yahui
    Liu, Xin
    Lei, Xuefei
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (03)
  • [49] 2D V10O24•nH2O sheets as a high-performance cathode material for aqueous zinc-ion batteries
    Mao, Fangfang
    Li, Yanwei
    Zou, Zhengguang
    Huang, Bin
    Zhu, Qing
    Yao, Jinhuan
    ELECTROCHIMICA ACTA, 2023, 442
  • [50] Hierarchical Porous ZnMn2O4 Microspheres as a High-Performance Anode for Lithium-Ion Batteries
    Fan, Binbin
    Hu, Aiping
    Chen, Xiaohua
    Zhang, Shiying
    Tang, Qunli
    Wang, Jiande
    Deng, Weina
    Liu, Zheng
    Xiao, Kuikui
    ELECTROCHIMICA ACTA, 2016, 213 : 37 - 45