MMAD: THE FIRST-EVER COMPREHENSIVE BENCHMARK FOR MULTIMODAL LARGE LANGUAGE MODELS IN INDUSTRIAL ANOMALY DETECTION

被引:0
|
作者
Southern University of Science and Technology, China [1 ]
不详 [2 ]
不详 [3 ]
不详 [4 ]
机构
来源
关键词
1106.6 - 913.3 Quality Assurance and Control;
D O I
暂无
中图分类号
学科分类号
摘要
Anomaly detection
引用
收藏
相关论文
共 35 条
  • [31] Leveraging Chat-Based Large Vision Language Models for Multimodal Out-of-Context Detection
    Shalabi, Fatma
    Felouat, Hichem
    Nguyen, Huy H.
    Echizen, Isao
    ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOL 4, AINA 2024, 2024, 202 : 86 - 98
  • [32] Benchmarking and Evaluating Large Language Models in Phishing Detection for Small and Midsize Enterprises: A Comprehensive Analysis
    Zhang, Jun
    Wu, Peiqiao
    London, Jeffrey
    Tenney, Dan
    IEEE ACCESS, 2025, 13 : 28335 - 28352
  • [33] A Preliminary Study on an Intrusion Detection Method using Large Language Models in Industrial Control Systems
    Ann, SeokHyun
    Cho, Seong-je
    Kim, Hongeun
    2024 FIFTEENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS, ICUFN 2024, 2024, : 600 - 602
  • [34] Leveraging Deep Learning and Multimodal Large Language Models for Near-Miss Detection Using Crowdsourced Videos
    Jaradat, Shadi
    Elhenawy, Mohammed
    Ashqar, Huthaifa I.
    Paz, Alexander
    Nayak, Richi
    IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2025, 6 : 223 - 235
  • [35] Stylometry-driven framework for Urdu intrinsic plagiarism detection: a comprehensive analysis using machine learning, deep learning, and large language models
    Manzoor, Muhammad Faraz
    Farooq, Muhammad Shoaib
    Abid, Adnan
    Neural Computing and Applications, 2025, 37 (09) : 6479 - 6513