Self-supporting trace Pt-decorated ternary metal phosphide as efficient bifunctional electrocatalyst for water splitting

被引:0
|
作者
Feng, Jiejie [1 ,2 ]
Chu, Changshun [1 ,2 ]
Wei, Liling [1 ]
Li, Huayi [3 ]
Shen, Jianquan [1 ]
机构
[1] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci BNLMS, Key Lab Green Printing, Zhongguancun North First St 2, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci BNLMS, Key Lab Engn Plast, Zhongguancun North First St 2, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrogen evolution reaction; Oxygen evolution reaction; Bifunctional catalysts; Water splitting; Transition metal phosphide; Low Pt loading; NI2P NANOSHEETS; NANOPARTICLES; NANOARRAYS; HYDROGEN; ENERGY;
D O I
10.1016/j.jallcom.2024.176946
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Compared to monofunctional catalysts, the preparation of bifunctional materials with HER and OER activities holds greater significance for the separation of hydrogen from water electrolysis. In this study, we synthesized a self-supported bifunctional catalyst using ternary transition metal (Ni, Fe, Co) phosphide adorned with trace Pt for water splitting (P-Fe6Co3Ni/Pt/NF). As the main catalytic kernel toward HER, the Pt nanoparticles underwent uniform in situ reduction on the Ni foam, avoiding clustering due to the protective effect of iron and cobalt phosphides. This exposed more active sites, improving HER kinetics. In the OER process, the deposited Fe and Co were confirmed to play a pivotal role and will undergo oxidation to oxyhydroxides during structural reconstruction. In addition to enhancing conductivity, the Mott-Schottky test revealed that Pt can facilitate the formation of more active sites, leading to a lower potential for the OER reaction. Ultimately, P-Fe6Co3Ni/Pt/NF required only an overpotential of 32.8 mV in HER to reach the current density of 10 mA cm(-2), demonstrating excellent OER activity with a low overpotential of 259.9 mV at current density of 20 mA cm(-2). When employed as cathode and anode in water electrolysis, P-Fe6Co3Ni/Pt/NF necessitated only 1.6 V cell voltage to achieve the current density of 10 mA cm(-2). This study provides a reference for designing other highly efficient Pt-based electrocatalyst, thereby promoting the widespread application of water electrolysis in hydrogen production.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Self-supported ternary (NixFey)2P nanoplates arrays as an efficient bifunctional electrocatalyst for overall water splitting
    Li, Shuaishuai
    Wang, Xing
    Li, Min
    Liu, Jian
    Li, Chaorong
    Wu, Huaping
    Guo, Daoyou
    Ye, Fangmin
    Wang, Shunli
    Cheng, Lin
    Liu, Aiping
    ELECTROCHIMICA ACTA, 2019, 319 : 561 - 568
  • [32] Cobalt-molybdenum bimetallic phosphide grown in situ on nickel foam as a bifunctional electrocatalyst for efficient water splitting
    Wang, Qiangqiang
    Song, Yameng
    Liu, Xiuzhen
    Liang, Haojun
    Li, Shiqi
    Wang, Shanshan
    Sun, Yanyan
    Zhang, Yingjiu
    IONICS, 2024, 30 (03) : 1523 - 1530
  • [33] Cobalt-molybdenum bimetallic phosphide grown in situ on nickel foam as a bifunctional electrocatalyst for efficient water splitting
    Qiangqiang Wang
    Yameng Song
    Xiuzhen Liu
    Haojun Liang
    Shiqi Li
    Shanshan Wang
    Yanyan Sun
    Yingjiu Zhang
    Ionics, 2024, 30 : 1523 - 1530
  • [34] Electrodeposition of cobalt-iron bimetal phosphide on Ni foam as a bifunctional electrocatalyst for efficient overall water splitting
    Duan, Donghong
    Guo, Desheng
    Gao, Jie
    Liu, Shibin
    Wang, Yunfang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 622 : 250 - 260
  • [35] Amorphous nanosphere self-supporting electrode based on filter paper for efficient water splitting
    Zhang, Yue
    Zhang, Zhe
    Zhang, Xuetao
    Gao, Xinglong
    Shang, Zhihui
    Huang, Xuezhen
    Guo, Enyan
    Si, Conghui
    Wei, Mingzhi
    Lu, Qifang
    Han, Xiujun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 972
  • [36] Ru doping induces the construction of a unique core-shell microflower self-supporting electrocatalyst for highly efficient overall water splitting
    Ye, Lei
    Zhang, Yeqing
    Guo, Buwen
    Cao, Duanlin
    Gong, Yaqiong
    DALTON TRANSACTIONS, 2021, 50 (39) : 13951 - 13960
  • [37] Self-Supporting np-AlFeNiO Bifunctional Electrode Material for Electrochemical Water Splitting Prepared by Electrooxidation
    Ma, Zhihui
    Xu, Wence
    Gao, Zhonghui
    Liang, Yanqin
    Jiang, Hui
    Li, Zhaoyang
    Cui, Zhenduo
    Zhang, Huifang
    Zhu, Shengli
    ENERGIES, 2024, 17 (07)
  • [38] Self-supporting and hierarchically porous NixFe-S/NiFe2O4 heterostructure as a bifunctional electrocatalyst for fluctuating overall water splitting
    Yan, Wenjing
    Zhang, Jintao
    Lu, Aijing
    Lu, Songle
    Zhong, Yiwei
    Wang, Mingyong
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2022, 29 (05) : 1120 - 1131
  • [39] An etch-doping strategy: cobalt-iron bimetallic phosphide as a bifunctional electrocatalyst for highly efficient water splitting
    Wang, Yuanyuan
    Wang, Shanshan
    Chen, Xiaogang
    Zhao, Xuan
    Chang, Shulong
    Guo, Fengmei
    Xu, Jie
    Shang, Yuanyuan
    Zhang, Yingjiu
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (19) : 8527 - 8534
  • [40] Tungsten promoted nickel phosphide nanosheets supported on carbon cloth: An efficient and stable bifunctional electrocatalyst for overall water splitting
    Li, Shanshan
    Liu, Yuanjian
    Wu, Yudong
    Du, Xiangheng
    Guan, Jibiao
    Wang, Lina
    Zhang, Ming
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (75) : 37152 - 37161