Short-term wind power prediction based on kpca-kmpmr

被引:0
|
作者
Wang X. [1 ]
Wang C. [2 ]
Chang Y. [3 ]
机构
[1] Institute of Technology, Gansu Radio and TV University, Lanzhou
[2] Northwest Engineering Corporation Limited, PowerChina, Xi'an
[3] Maintenance Department of Shanghai Shentong Metro Power Supply Company, Shanghai
来源
关键词
Extract features; Kernel minmax probability machine regression; Kernel principal component analysis; Wind power prediction;
D O I
10.6329/CIEE.2017.1.01
中图分类号
学科分类号
摘要
Wind power prediction is significant for power system dispatching and safe-stable operation. This paper proposes a new approach for wind power prediction. It is derived by integrating the kernel principal component analysis (KPCA) method with a new probability learning method. kernel minmax probability machine regression (KMPMR). In the proposed model. KPCA is used to extract features of the inputs and obtain kernel principal components. Then. KMPMR is employed to predict the short-term wind power by using the real dataset from wind farms of Alberta. Canada. The results show that. under the same conditions. the proposed method provides a better prediction performance than KMPMR and PCA-KKMPMR methods.
引用
收藏
页码:1 / 9
页数:8
相关论文
共 50 条
  • [41] Research on the prediction of short-term wind power based on wavelet neural networks
    Feng, Qiming
    Qian, Suping
    ENERGY REPORTS, 2022, 8 : 553 - 559
  • [42] Wind Power Short-Term Prediction Based on LSTM and Discrete Wavelet Transform
    Liu, Yao
    Guan, Lin
    Hou, Chen
    Han, Hua
    Liu, Zhangjie
    Sun, Yao
    Zheng, Minghui
    APPLIED SCIENCES-BASEL, 2019, 9 (06):
  • [43] Short-term wind power prediction based on LSSVM-GSA model
    Yuan, Xiaohui
    Chen, Chen
    Yuan, Yanbin
    Huang, Yuehua
    Tan, Qingxiong
    ENERGY CONVERSION AND MANAGEMENT, 2015, 101 : 393 - 401
  • [44] Wind power short-term prediction based on SVM trained by improved FOA
    Xiao, Feng
    Chen, Guochu
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY AND ENVIRONMENTAL SCIENCE 2015, 2015, 31 : 54 - 61
  • [45] Short-Term Wind Power Forecasting with Combined Prediction Based on Chaotic Analysis
    Dong, Lei
    Gao, Shuang
    Liao, Xiaozhong
    Gao, Yang
    PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (5B): : 35 - 39
  • [46] Research on Short-Term Wind Power Prediction Based on Combined Forecasting Models
    Zhang, Chi
    Zeng, Jie
    Xie, Ning
    Yang, Ping
    Zhang, Yujia
    Zhang, Zhen
    2016 3RD INTERNATIONAL CONFERENCE ON MANUFACTURING AND INDUSTRIAL TECHNOLOGIES, 2016, 70
  • [47] Short-term prediction of wind power based on EEMD-ACS-LSSVM
    Jiang, Guimin
    Chen, Zhijun
    Li, Xiaozhu
    Yan, Xueqin
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2020, 41 (05): : 77 - 84
  • [48] Short-Term Prediction of Wind Farm Power Based on PSO-SVM
    Wang, He
    Hu, Zhijian
    Hu, Mengyue
    Zhang, Ziyong
    2012 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2012,
  • [49] Short-Term Wind Power Forecasting based on Numerical Weather Prediction Adjustment
    Qu, Guannan
    Mei, Jie
    He, Dawei
    2013 11TH IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2013, : 453 - 457
  • [50] Short-Term Wind Power Prediction Based on Wind2vec-BERT Model
    Yu, Miao
    Han, Jinyang
    Wu, Honghao
    Yan, Jiaxin
    Zeng, Runxin
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2025, 16 (02) : 933 - 944