Analytical and numerical validation for solving the fractional Klein-Gordon equation using the fractional complex transform and variational iteration methods

被引:4
|
作者
Khader M.M. [2 ,3 ]
Adel M. [1 ]
机构
[1] Department of Mathematics, Faculty of Science, Cairo University, Giza
[2] Department of Mathematics and Statistics, College of Science, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh
[3] Department of Mathematics, Faculty of Science, Benha University, Benha
关键词
Caputo derivative; Fractional complex transform method Variational iteration method; Nonlinear fractional Klein-Gordon equation;
D O I
10.1515/nleng-2016-0018
中图分类号
学科分类号
摘要
In this paper, we implement the fractional complex transform method to convert the nonlinear fractional Klein-Gordon equation (FKGE) to an ordinary differential equation. We use the variational iteration method (VIM) to solve the resulting ODE. The fractional derivatives are presented in terms of the Caputo sense. Some numerical examples are presented to validate the proposed techniques. Finally, a comparison with the numerical solution using Runge-Kutta of order four is given. © 2016 Walter de Gruyter GmbH, Berlin/Boston 2016.
引用
收藏
页码:141 / 145
页数:4
相关论文
共 50 条
  • [31] Analytical solution for the dynamics and optimization of fractional Klein-Gordon equation: an application to quantum particle
    Abro, Kashif Ali
    Siyal, Ambreen
    Atangana, Abdon
    Al-Mdallal, Qasem M.
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (08)
  • [32] An efficient numerical technique for variable order time fractional nonlinear Klein-Gordon equation
    Hassani, H.
    Machado, J. A. Tenreiro
    Naraghirad, E.
    APPLIED NUMERICAL MATHEMATICS, 2020, 154 : 260 - 272
  • [33] Nonlinear Klein-Gordon equation pulsons with a fractional power potential
    Salimov, R. K.
    Ekomasov, E. G.
    LETTERS ON MATERIALS, 2016, 6 (01): : 43 - 45
  • [34] Fractional Klein-Gordon equation on AdS2+1
    Basteiro, Pablo
    Elfert, Janine
    Erdmenger, Johanna
    Hinrichsen, Haye
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (36)
  • [35] A robust numerical method to find the solutions of time-fractional Klein-Gordon equation
    Guaman, Jorge Sebastian Bunay
    Shather, Akram H.
    Hussein, Abbas Hameed Abdul
    Diaa, Nabaa Muhammad
    Khalid, Mohammed
    Kareem, Nihad Abdul
    Sreseh, Saleh Naji
    Fiallos, Juan Jose Flores
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2025, 13 (02): : 709 - 720
  • [36] GALERKIN-FEM FOR OBTAINING THE NUMERICAL SOLUTION OF THE LINEAR FRACTIONAL KLEIN-GORDON EQUATION
    Khader, M. M.
    Abualnaja, Khadijah M.
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (01): : 261 - 270
  • [37] NEW FRACTAL SOLITON SOLUTIONS FOR THE COUPLED FRACTIONAL KLEIN-GORDON EQUATION WITH β-FRACTIONAL DERIVATIVE
    Wang, Kangle
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (01)
  • [38] Stability analysis and a numerical scheme for fractional Klein-Gordon equations
    Khan, Hasib
    Khan, Aziz
    Chen, Wen
    Shah, Kamal
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (02) : 723 - 732
  • [39] A numerical study on the nonlinear fractional Klein–Gordon equation
    Mulimani M.
    Kumbinarasaiah S.
    Journal of Umm Al-Qura University for Applied Sciences, 2024, 10 (1): : 178 - 199
  • [40] Analytical investigation of the fractional Klein-Gordon equation along with analysis of bifurcation, sensitivity and chaotic behaviors
    Gu, Yongyi
    Lai, Yongkang
    MODERN PHYSICS LETTERS B, 2025,