Experimental study on high-cycle fatigue performance of laser cladding additively manufactured 316L stainless steel

被引:1
|
作者
Wang, Ziyi [1 ]
Yuan, Yue [1 ]
Zhang, Xiang [1 ]
Zeng, Bin [2 ]
Wang, Chun-Lin [1 ]
机构
[1] Southeast Univ, Minist Educ, Key Lab Concrete & Prestressed Concrete Struct, Nanjing 210096, Peoples R China
[2] MCC Grp, Cent Res Inst Bldg & Construct, Beijing 100088, Peoples R China
关键词
Laser cladding; High-cycle fatigue; Failure modes; Fatigue life curve; Fusion defects;
D O I
10.1016/j.conbuildmat.2024.139214
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Laser cladding (LC) technology has garnered significant attention for its application in the repair of corrosion damage in steel structures. However, research on the high-cycle fatigue performance of LC materials remains limited. This study employed 316L stainless steel powder to produce LC specimens and conducted uniaxial tensile-tensile high-cycle fatigue tests to explore various laser deposition directions and surface roughnesses. The resulting S-N curves provide insights into the high-cycle fatigue behaviour of LC materials. Additionally, SEM images were utilized to analyse the fatigue failure fracture characteristics. The experimental results reveal that cladding materials deposited parallel to the loading direction exhibit superior high-cycle fatigue performance. Fatigue fractures in the specimens generally originate from laser fusion defects, which not only reduce the lifespan of the specimen but also influence the failure location. Fatigue failure assessments of the lasercladded materials were conducted via equivalent life diagrams, which revealed a high degree of correlation with the actual failure conditions. Existing fatigue design curves for base materials can be applied to the highcycle fatigue performance design of laser-cladded 316L stainless steel, demonstrating a performance that surpasses the average level of steel butt welds.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Ballistic Performance of Additively Manufactured 316L Stainless Steel Spherical Fragments
    Xue H.
    Wang T.
    Huang G.
    Cui X.
    Han H.
    Binggong Xuebao/Acta Armamentarii, 2024, 45 (02): : 395 - 406
  • [22] Enhanced fatigue reliability analysis of additively manufactured 316L stainless steel components
    Cheng, Zhengwei
    Fang, Yongfeng
    Tee, Kong Fah
    AIP ADVANCES, 2025, 15 (03)
  • [23] Using shot peening and burnishing to improve fatigue performance of additively manufactured 316L stainless steel
    Sayadi, Daniyal
    Rangrizian, Hossein
    Khodabandeh, Alireza
    Nezarati, Masoud
    Hemasian Etefagh, Ardeshir
    Khajehzadeh, Mohsen
    Razfar, Mohammad Reza
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2024, 238 (04) : 707 - 722
  • [24] Fatigue of additively manufactured 316L stainless steel: The influence of porosity and surface roughness
    Solberg, Klas
    Guan, Shuai
    Razavi, Nima
    Welo, Torgeir
    Chan, Kang Cheung
    Berto, Filippo
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2019, 42 (09) : 2043 - 2052
  • [25] Fatigue strength improvement of additively manufactured 316L stainless steel with high porosity through preloading
    Subasic, Mustafa
    Olsson, Marten
    Dadbakhsh, Sasan
    Zhao, Xiaoyu
    Krakhmalev, Pavel
    Mansour, Rami
    INTERNATIONAL JOURNAL OF FATIGUE, 2024, 180
  • [26] Additively manufactured 316L stainless steel: An efficient electrocatalyst
    Lodhi, M. J. K.
    Deen, K. M.
    Haider, Waseem
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (45) : 24698 - 24704
  • [27] Superior low cycle fatigue property from cell structures in additively manufactured 316L stainless steel
    Cui, Luqing
    Deng, Dunyong
    Jiang, Fuqing
    Peng, Ru Lin
    Xin, Tongzheng
    Mousavian, Reza Taherzadeh
    Yang, Zhiqing
    Moverare, Johan
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 111 : 268 - 278
  • [28] High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained
    Shamsujjoha, Md.
    Agnew, Sean R.
    Fitz-Gerald, James M.
    Moore, William R.
    Newman, Tabitha A.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2018, 49A (07): : 3011 - 3027
  • [29] High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained
    Md. Shamsujjoha
    Sean R. Agnew
    James M. Fitz-Gerald
    William R. Moore
    Tabitha A. Newman
    Metallurgical and Materials Transactions A, 2018, 49 : 3011 - 3027
  • [30] Superior low cycle fatigue property from cell structures in additively manufactured 316L stainless steel
    Luqing Cui
    Dunyong Deng
    Fuqing Jiang
    Ru Lin Peng
    Tongzheng Xin
    Reza Taherzadeh Mousavian
    Zhiqing Yang
    Johan Moverare
    Journal of Materials Science & Technology, 2022, 111 (16) : 268 - 278