Determination of the confidence intervals for multimodal probability density functions

被引:0
|
作者
机构
[1] Kesemen, Orhan
[2] Tiryaki, Buğra Kaan
[3] Özkul, Eda
[4] Tezel, Özge
来源
Tiryaki, Buğra Kaan (bugrakaantiryaki@gmail.com) | 2018年 / Gazi Universitesi卷 / 31期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The shortest interval approach can be solved as an optimization problem, while the equally tailed approach is determined by using the distribution function. The equal density approach is proposed instead of the optimization problem for determining the shortest confidence interval. It is applied to multimodal probability density functions to determine the shortest confidence interval. Furthermore, the equal density and optimization approach for the shortest confidence interval and the equally tailed approach were applied to numerical examples and their results were compared. Nevertheless, the main subject of this study is the calculation of the shortest confidence intervals for any multimodal distribution. © 2018, Gazi University Eti Mahallesi. All rights reserved.
引用
收藏
相关论文
共 50 条
  • [21] A multiple kernel-based kernel density estimator for multimodal probability density functions
    Chen, Jia-Qi
    He, Yu -Lin
    Cheng, Ying-Chao
    Fournier-Viger, Philippe
    Huang, Joshua Zhexue
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 132
  • [22] A new uncertainty propagation method considering multimodal probability density functions
    Zhang, Z.
    Wang, J.
    Jiang, C.
    Huang, Z. L.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2019, 60 (05) : 1983 - 1999
  • [23] A new uncertainty propagation method considering multimodal probability density functions
    Z. Zhang
    J. Wang
    C. Jiang
    Z. L. Huang
    Structural and Multidisciplinary Optimization, 2019, 60 : 1983 - 1999
  • [24] On the determination of probability density functions by using Neural Networks
    Garrido, L
    Juste, A
    COMPUTER PHYSICS COMMUNICATIONS, 1998, 115 (01) : 25 - 31
  • [25] Confidence intervals for kernel density estimation
    Fiorio, Carlo V.
    STATA JOURNAL, 2004, 4 (02): : 168 - 179
  • [26] Confidence intervals for logspline density estimation
    Kooperberg, C
    Stone, CJ
    NONLINEAR ESTIMATION AND CLASSIFICATION, 2003, 171 : 285 - 295
  • [27] Confidence intervals in the determination of turbulence parameters
    Garcia, CM
    Jackson, PR
    Garcia, MH
    EXPERIMENTS IN FLUIDS, 2006, 40 (04) : 514 - 522
  • [28] Confidence intervals in the determination of turbulence parameters
    Carlos M. Garcia
    P. Ryan Jackson
    Marcelo H. Garcia
    Experiments in Fluids, 2006, 40 : 514 - 522
  • [29] Simulations of the Hadamard Variance: Probability Distributions and Confidence Intervals
    Ashby, Neil
    Patla, Bijunath
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2016, 63 (04) : 636 - 645
  • [30] Fuzzy probability calculation with confidence intervals in Bayesian networks
    Derya Ersel
    Duygu İçen
    Soft Computing, 2016, 20 : 819 - 829