Förster-type resonance energy transfer (FRET): Applications

被引:0
|
作者
Demir H.V. [1 ,2 ,3 ]
Hernández Martínez P.L. [3 ]
Govorov A. [4 ]
机构
[1] Department of Electrical and Electronics Engineering, Department of Physics, and UNAM—National Nanotechnology Research Centre, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara
[2] School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, TPI—The Institute of Photonics, Nanyang Technological University, Singapore
[3] School of Physical and Mathematical Sciences, LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, TPI—The Institute of Photonics, Nanyang Technological University, Singapore
[4] Department of Physics and Astronomy, Ohio University, Athens, OH
来源
SpringerBriefs in Applied Sciences and Technology | 2017年 / 0卷 / 9789811018749期
关键词
Energy transfer;
D O I
10.1007/978-981-10-1876-3_1
中图分类号
学科分类号
摘要
In this chapter, we present several applications of Förster-type nonradiative energy transfer (FRET) related phenomena. In particular, we review light generation and light harvesting applications as well as bio-applications. © 2017, The Author(s).
引用
收藏
页码:1 / 40
页数:39
相关论文
共 50 条
  • [21] Screening for protein-protein interactions using Förster resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM)
    Anca Margineanu
    Jia Jia Chan
    Douglas J. Kelly
    Sean C. Warren
    Delphine Flatters
    Sunil Kumar
    Matilda Katan
    Christopher W. Dunsby
    Paul M. W. French
    Scientific Reports, 6
  • [22] Restricted state selection in fluorescent protein Förster resonance energy transfer
    Larijani, B. (banafshe.larijani@cancer.org.uk), 1600, American Chemical Society (135):
  • [23] Freezing Conformers for Gas-Phase Förster Resonance Energy Transfer
    Lindkvist, Thomas Toft
    Djavani-Tabrizi, Iden
    Chen, Li
    Nielsen, Steen Brondsted
    CHEMPLUSCHEM, 2024, 89 (12):
  • [24] Electrical control of Förster energy transfer
    Klaus Becker
    John M. Lupton
    Josef Müller
    Andrey L. Rogach
    Dmitri V. Talapin
    Horst Weller
    Jochen Feldmann
    Nature Materials, 2006, 5 : 777 - 781
  • [25] Pitfalls and limitations in the practical use of Förster’s theory of resonance energy transfer
    Silvia E. Braslavsky
    Eduard Fron
    Hernán B. Rodríguez
    Enrique San Román
    Gregory D. Scholes
    Gerd Schweitzer
    Bernard Valeur
    Jakob Wirz
    Photochemical & Photobiological Sciences, 2008, 7 : 1444 - 1448
  • [26] A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer
    Hideji Murakoshi
    Akihiro C. E. Shibata
    Yoshihisa Nakahata
    Junichi Nabekura
    Scientific Reports, 5
  • [27] Damage detection through Förster Resonance Energy Transfer in mechanoresponsive polymer nanocomposites
    Wang, Meng
    Schwindt, Alexandra
    Wu, Kedi
    Qin, Ying
    Kwan, Allison
    Tongay, Sefaattin
    Green, Matthew D.
    Polymer, 2021, 212
  • [28] Membrane microheterogeneity: Förster resonance energy transfer characterization of lateral membrane domains
    Luís M. S. Loura
    Fábio Fernandes
    Manuel Prieto
    European Biophysics Journal, 2010, 39 : 589 - 607
  • [29] Förster Resonance Energy Transfer and Harvesting in II–VI Fractional Monolayer Structures
    T. V. Shubina
    M. A. Semina
    K. G. Belyaev
    A. V. Rodina
    A. A. Toropov
    S. V. Ivanov
    Journal of Electronic Materials, 2017, 46 : 3922 - 3926
  • [30] Polymer bulk heterojunction solar cells employing Förster resonance energy transfer
    Huang J.-S.
    Goh T.
    Li X.
    Sfeir M.Y.
    Bielinski E.A.
    Tomasulo S.
    Lee M.L.
    Hazari N.
    Taylor A.D.
    Nature Photonics, 2013, 7 (6) : 479 - 485