Wireless neuromodulation at submillimeter precision via a microwave split-ring resonator

被引:1
|
作者
Marar, Carolyn [1 ]
Jiang, Ying [2 ,7 ]
Li, Yueming [3 ]
Lan, Lu [4 ]
Zheng, Nan [5 ]
Chen, Guo [4 ]
Yang, Chen [4 ,6 ]
Cheng, Ji-Xin [1 ,4 ,6 ]
机构
[1] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[2] Boston Univ, Grad Program Neurosci, Boston, MA 02215 USA
[3] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA
[4] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
[5] Boston Univ, Div Mat Sci & Engn, Boston, MA 02215 USA
[6] Boston Univ, Dept Chem, Boston, MA 02215 USA
[7] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 40期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
DEEP BRAIN-STIMULATION; TRANSCRANIAL MAGNETIC STIMULATION; THERMAL-DAMAGE; NEURONS; EPILEPSY; WATER;
D O I
10.1126/sciadv.ado5560
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A broad spectrum of electromagnetic waves has been explored for wireless neuromodulation. Transcranial magnetic stimulation, with long wavelengths, cannot provide submillimeter spatial resolution. Visible light, with its short wavelengths, suffers from strong scattering in the deep tissue. Microwaves have centimeter-scale penetration depth and have been shown to reversibly inhibit neuronal activity. Yet, microwaves alone do not provide sufficient spatial precision to modulate target neurons without affecting surrounding tissues. Here, we report a split-ring resonator (SRR) that generates an enhanced microwave field at its gap with submillimeter spatial precision. With the SRR, microwaves at dosages below the safe exposure limit are shown to inhibit the firing of neurons within 1 mm of the SRR gap site. The microwave SRR reduced seizure activity at a low dose in both in vitro and in vivo models of epilepsy. This microwave dosage is confirmed to be biosafe via histological and biochemical assessment of brain tissue.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Low-power microwave plasma source based on a microstrip split-ring resonator
    Iza, F
    Hopwood, JA
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2003, 31 (04) : 782 - 787
  • [42] Performance Improvement of Optically Controlled Microwave Switch by Introducing Complementary Split-Ring Resonator
    Lan, Litao
    Zhao, Deshuang
    Wang, Bing-Zhong
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2013, 12 : 930 - 932
  • [43] A Novel Microwave Imaging Approach Using Rectangular Antenna with Complementary Split-Ring Resonator
    Banu, M. Fahmitha
    Devi, B. Aruna
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2024, 31 (05): : 1696 - 1703
  • [44] Concentric Split-Ring Resonator Microwave Microplasma Generation at Off-Resonant Frequencies
    Dextre, Roberto A.
    Yamauchi, Toyofumi
    Polzin, Kurt A.
    Xu, Kunning G.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2020, 48 (04) : 827 - 834
  • [45] Determination of Transmission Zero Frequency for Complementary Split-Ring Resonator/Split-Ring Resonator Unit Cells from Effective Permittivity and Permeability
    AL-Behadili, Amer Abbood
    Petrescu, Teodor
    2019 11TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE), 2019,
  • [46] Plasmon resonance in split-ring resonator based heterostructures
    Zhou, Xin
    Chen, Xinghui
    Huang, Lumeng
    Zhu, Junwei
    Li, Tong
    MATERIALS EXPRESS, 2023, 13 (01) : 111 - 116
  • [47] Design and characterization of a novel toroidal split-ring resonator
    Bobowski, J. S.
    Nakahara, Hiroko
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (02):
  • [48] Superconducting Filter Based on Split-Ring Resonator Structures
    Tan, Cheng
    Wang, Yu
    Yan, Zhongming
    Nie, Xinyi
    He, Yonghai
    Chen, Weirong
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2019, 29 (04)
  • [49] Plasmon coupling in vertical split-ring resonator metamolecules
    Pin Chieh Wu
    Wei-Lun Hsu
    Wei Ting Chen
    Yao-Wei Huang
    Chun Yen Liao
    Ai Qun Liu
    Nikolay I. Zheludev
    Greg Sun
    Din Ping Tsai
    Scientific Reports, 5
  • [50] Split-ring resonator loaded waveguides with multiple stopbands
    Kehn, M. N. M.
    Quevedo-Teruel, O.
    Rajo-Iglesias, E.
    ELECTRONICS LETTERS, 2008, 44 (12) : 714 - 715