Remaining Useful Life Estimation of Lithium-Ion Batteries Based on Small Sample Models

被引:3
|
作者
Liu, Lu [1 ]
Sun, Wei [2 ]
Yue, Chuanxu [1 ]
Zhu, Yunhai [3 ]
Xia, Weihuan [4 ]
机构
[1] Qilu Univ Technol, Inst Automat, Shandong Acad Sci, Jinan 250000, Peoples R China
[2] Jin Lei Technol Co Ltd, Jinan 250000, Peoples R China
[3] Qilu Univ Technol, Shandong Acad Sci, Sci & Technol Serv Platform, Jinan 250000, Peoples R China
[4] Jiangxi Univ Finance & Econ, Sch Informat Management & Math, Nanchang 330013, Peoples R China
关键词
lithium-ion battery; remaining useful life; CEEMDAN; PSO; BiGRU; PREDICTION;
D O I
10.3390/en17194932
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate prediction of the Remaining Useful Life (RUL) of lithium-ion batteries is essential for enhancing energy management and extending the lifespan of batteries across various industries. However, the raw capacity data of these batteries is often noisy and exhibits complex nonlinear degradation patterns, especially due to capacity regeneration phenomena during operation, making precise RUL prediction a significant challenge. Although various deep learning-based methods have been proposed, their performance relies heavily on the availability of large datasets, and satisfactory prediction accuracy is often achievable only with extensive training samples. To overcome this limitation, we propose a novel method that integrates sequence decomposition algorithms with an optimized neural network. Specifically, the Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) algorithm is employed to decompose the raw capacity data, effectively mitigating the noise from capacity regeneration. Subsequently, Particle Swarm Optimization (PSO) is used to fine-tune the hyperparameters of the Bidirectional Gated Recurrent Unit (BiGRU) model. The final BiGRU-based prediction model was extensively tested on eight lithium-ion battery datasets from NASA and CALCE, demonstrating robust generalization capability, even with limited data. The experimental results indicate that the CEEMDAN-PSO-BiGRU model can reliably and accurately predict the RUL and capacity of lithium-ion batteries, providing a promising and reliable method for RUL prediction in practical applications.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Online Remaining Useful Life Prediction of Lithium-ion Batteries Based on Hybrid Model
    Sun, Jing
    Yan, Huiyi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2025, 172 (04)
  • [22] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Capacity Estimation and Box-Cox Transformation
    Xue, Qiao
    Shen, Shiquan
    Li, Guang
    Zhang, Yuanjian
    Chen, Zheng
    Liu, Yonggang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (12) : 14765 - 14779
  • [23] Lithium-ion batteries remaining useful life prediction based on BLS-RVM
    Chen, Zewang
    Shi, Na
    Ji, Yufan
    Niu, Mu
    Wang, Youren
    ENERGY, 2021, 234
  • [24] Prediction of remaining useful life of lithium-ion batteries based on PCA-GPR
    He B.
    Yang X.
    Wang J.
    Zhu X.
    Hu Z.
    Liu Q.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (05): : 484 - 491
  • [25] Particle Filtering based Estimation of Remaining Useful Life of Lithium-ion Batteries Employing Power Fading Data
    Guha, Arijit
    Patra, Amit
    2017 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2017, : 193 - 198
  • [26] Lithium-ion batteries remaining useful life prediction based on BLS-RVM
    Chen, Zewang
    Shi, Na
    Ji, Yufan
    Niu, Mu
    Wang, Youren
    Energy, 2021, 234
  • [27] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on the Partial Voltage and Temperature
    Yang, Yanru
    Wen, Jie
    Liang, Jianyu
    Shi, Yuanhao
    Tian, Yukai
    Wang, Jiang
    SUSTAINABILITY, 2023, 15 (02)
  • [28] Remaining useful life prediction for lithium-ion batteries based on an integrated health indicator
    Sun, Yongquan
    Hao, Xueling
    Pecht, Michael
    Zhou, Yapeng
    MICROELECTRONICS RELIABILITY, 2018, 88-90 : 1189 - 1194
  • [29] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Gaussian Processes Mixture
    Li, Lingling
    Wang, Pengchong
    Chao, Kuei-Hsiang
    Zhou, Yatong
    Xie, Yang
    PLOS ONE, 2016, 11 (09):
  • [30] State of health estimation and remaining useful life prediction for lithium-ion batteries using FBELNN and RCMNN
    Lin, Qiongbin
    Xu, Zhifan
    Lin, Chih-Min
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (06) : 10919 - 10933