Remaining Useful Life Estimation of Lithium-Ion Batteries Based on Small Sample Models

被引:3
|
作者
Liu, Lu [1 ]
Sun, Wei [2 ]
Yue, Chuanxu [1 ]
Zhu, Yunhai [3 ]
Xia, Weihuan [4 ]
机构
[1] Qilu Univ Technol, Inst Automat, Shandong Acad Sci, Jinan 250000, Peoples R China
[2] Jin Lei Technol Co Ltd, Jinan 250000, Peoples R China
[3] Qilu Univ Technol, Shandong Acad Sci, Sci & Technol Serv Platform, Jinan 250000, Peoples R China
[4] Jiangxi Univ Finance & Econ, Sch Informat Management & Math, Nanchang 330013, Peoples R China
关键词
lithium-ion battery; remaining useful life; CEEMDAN; PSO; BiGRU; PREDICTION;
D O I
10.3390/en17194932
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate prediction of the Remaining Useful Life (RUL) of lithium-ion batteries is essential for enhancing energy management and extending the lifespan of batteries across various industries. However, the raw capacity data of these batteries is often noisy and exhibits complex nonlinear degradation patterns, especially due to capacity regeneration phenomena during operation, making precise RUL prediction a significant challenge. Although various deep learning-based methods have been proposed, their performance relies heavily on the availability of large datasets, and satisfactory prediction accuracy is often achievable only with extensive training samples. To overcome this limitation, we propose a novel method that integrates sequence decomposition algorithms with an optimized neural network. Specifically, the Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) algorithm is employed to decompose the raw capacity data, effectively mitigating the noise from capacity regeneration. Subsequently, Particle Swarm Optimization (PSO) is used to fine-tune the hyperparameters of the Bidirectional Gated Recurrent Unit (BiGRU) model. The final BiGRU-based prediction model was extensively tested on eight lithium-ion battery datasets from NASA and CALCE, demonstrating robust generalization capability, even with limited data. The experimental results indicate that the CEEMDAN-PSO-BiGRU model can reliably and accurately predict the RUL and capacity of lithium-ion batteries, providing a promising and reliable method for RUL prediction in practical applications.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Remaining Useful Life Estimation of Lithium-Ion Batteries based on Thermal Dynamics
    Zhang, Dong
    Dey, Satadru
    Perez, Hector E.
    Moura, Scott J.
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 4042 - 4047
  • [2] Health Monitoring and Remaining Useful Life Estimation of Lithium-Ion Aeronautical Batteries
    Moreira Penna, Jose Affonso
    Nascimento, Cairo Lucio, Jr.
    Rodrigues, Leonardo Ramos
    2012 IEEE AEROSPACE CONFERENCE, 2012,
  • [3] Remaining Useful Life Estimation of Lithium-ion Batteries based on a new Capacity Degradation model
    Guha, Arijit
    Vaisakh, K. V.
    Patra, Amit
    2016 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO, ASIA-PACIFIC (ITEC ASIA-PACIFIC), 2016, : 555 - 560
  • [4] Remaining Useful Life Estimation for Prognostics of Lithium-Ion Batteries Based on Recurrent Neural Network
    Catelani, Marcantonio
    Ciani, Lorenzo
    Fantacci, Romano
    Patrizi, Gabriele
    Picano, Benedetta
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [5] Remaining Useful Life Estimation of Lithium-Ion Batteries based on the Internal Resistance Growth Model
    Guha, Arijit
    Patra, Amit
    Vaisakh, K. V.
    2017 INDIAN CONTROL CONFERENCE (ICC), 2017, : 33 - 38
  • [6] A Transferable Prediction Approach for the Remaining Useful Life of Lithium-Ion Batteries Based on Small Samples
    Qin, Haochen
    Fan, Xuexin
    Fan, Yaxiang
    Wang, Ruitian
    Shang, Qianyi
    Zhang, Dong
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [7] Indirect remaining useful life prognostics for lithium-ion batteries
    Li, Lianbing
    Zhu, Yazun
    Wang, Linglong
    Yue, Donghua
    Li, Duo
    2018 24TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING (ICAC' 18), 2018, : 725 - 729
  • [8] Probabilistic Prediction of Remaining Useful Life of Lithium-ion Batteries
    Zhang, Renjie
    Li, Jialin
    Chen, Yifei
    Tan, Shiyi
    Jiang, Jiaxu
    Yuan, Xinmei
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1820 - 1824
  • [9] A Novel Hybrid Prognostic Approach for Remaining Useful Life Estimation of Lithium-Ion Batteries
    Sun, Tianfei
    Xia, Bizhong
    Liu, Yifan
    Lai, Yongzhi
    Zheng, Weiwei
    Wang, Huawen
    Wang, Wei
    Wang, Mingwang
    ENERGIES, 2019, 12 (19)
  • [10] Review of State Estimation and Remaining Useful Life Prediction Methods for Lithium-Ion Batteries
    Zhao, Jiahui
    Zhu, Yong
    Zhang, Bin
    Liu, Mingyi
    Wang, Jianxing
    Liu, Chenghao
    Hao, Xiaowei
    SUSTAINABILITY, 2023, 15 (06)