Harmony in diversity: Content cleansing change detection framework for very-high-resolution remote-sensing images

被引:2
|
作者
Cheng, Mofan [1 ]
He, Wei [1 ]
Li, Zhuohong [1 ]
Yang, Guangyi [2 ]
Zhang, Hongyan [1 ,3 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430079, Peoples R China
[2] Wuhan Univ, Sch Elect Informat, Wuhan 430079, Peoples R China
[3] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Change detection; Feature disentanglement; Content cleansing; Image restoration; SLOW FEATURE ANALYSIS; NETWORK; REPRESENTATION; MAD;
D O I
10.1016/j.isprsjprs.2024.09.002
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Change detection, as a crucial task in the field of Earth observation, aims to identify changed pixels between multi-temporal remote-sensing images captured at the same geographical area. However, in practical applications, there are challenges of pseudo changes arising from diverse imaging conditions and different remote-sensing platforms. Existing methods either overlook the different imaging styles between bi-temporal images, or transfer the bi-temporal styles via domain adaptation that may lose ground details. To address these problems, we introduce the disentangled representation learning that mitigates differences of imaging styles while preserving content details to develop a change detection framework, named Content Cleansing Network (CCNet). Specifically, CCNet embeds each input image into two distinct subspaces: a shared content space and a private style space. The separation of style space aims to mitigate the discrepant style due to different imaging condition, while the extracted content space reflects semantic features that is essential for change detection. Then, a multi-resolution parallel structure constructs the content space encoder, facilitating robust feature extraction of semantic information and spatial details. The cleansed content features enable accurate detection of changes in the land surface. Additionally, a lightweight decoder for image restoration enhances the independence and interpretability of the disentangled spaces. To verify the proposed method, CCNet is applied to five public datasets and a multi-temporal dataset collected in this study. Comparative experiments against eleven advanced methods demonstrate the effectiveness and superiority of CCNet. The experimental results show that our method robustly addresses the issues related to both temporal and platform variations, making it a promising method for change detection in complex conditions and supporting downstream applications.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [21] PGNet: Positioning Guidance Network for Semantic Segmentation of Very-High-Resolution Remote Sensing Images
    Liu, Bo
    Hu, Jinwu
    Bi, Xiuli
    Li, Weisheng
    Gao, Xinbo
    REMOTE SENSING, 2022, 14 (17)
  • [22] Novel Adaptive Histogram Trend Similarity Approach for Land Cover Change Detection by Using Bitemporal Very-High-Resolution Remote Sensing Images
    Lv, Zhi Yong
    Liu, Tong Fei
    Zhang, Penglin
    Benediktsson, Jon Atli
    Lei, Tao
    Zhang, Xiaokang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (12): : 9554 - 9574
  • [23] Improved Piecewise Linear Transformation for Precise Warping of Very-High-Resolution Remote Sensing Images
    Han, Youkyung
    Kim, Taeheon
    Yeom, Junho
    REMOTE SENSING, 2019, 11 (19)
  • [24] A MEASURE FOR CHANGE DETECTION IN VERY HIGH RESOLUTION REMOTE SENSING IMAGES BASED ON TEXTURE ANALYSIS
    Lefebvre, Antoine
    Corpetti, Thomas
    Moy, Laurence Hubert
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 1697 - 1700
  • [25] Change Detection Based on Gabor Wavelet Features for Very High Resolution Remote Sensing Images
    Li, Zhenxuan
    Shi, Wenzhong
    Zhang, Hua
    Hao, Ming
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (05) : 783 - 787
  • [26] Study on the Change Detection from High Resolution Remote-sensing Image
    Zhang, Zi-heng
    Tian, Yan
    Shao, Kui
    INTERNATIONAL CONFERENCE ON COMPUTER, NETWORK SECURITY AND COMMUNICATION ENGINEERING (CNSCE 2014), 2014, : 234 - 240
  • [27] An object-based supervised classification framework for very-high-resolution remote sensing images using convolutional neural networks
    Zhang, Xiaodong
    Wang, Qing
    Chen, Guanzhou
    Dai, Fan
    Zhu, Kun
    Gong, Yuanfu
    Xie, Yijuan
    REMOTE SENSING LETTERS, 2018, 9 (04) : 373 - 382
  • [28] Land Cover Change Detection Techniques: Very-High-Resolution Optical Images: A Review
    ZhiYong, Lv
    Liu, Tongfei
    Benediktsson, Jon Atli
    Falco, Nicola
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2022, 10 (01) : 44 - 63
  • [29] Use of object-based Siamese neural network to build change detection from very high resolution remote-sensing images
    Liu X.
    Li M.
    Wang X.
    Zhang Z.
    National Remote Sensing Bulletin, 2024, 28 (02) : 437 - 454
  • [30] AN OBJECT DETECTION TECHNIQUE FOR VERY HIGH RESOLUTION REMOTE SENSING IMAGES
    Moranduzzo, Thomas
    Melgani, Farid
    Daamouche, Abdelhamid
    2013 8TH INTERNATIONAL WORKSHOP ON SYSTEMS, SIGNAL PROCESSING AND THEIR APPLICATIONS (WOSSPA), 2013, : 79 - 83