Optimal feedback control for undamped wave equations by solving a HJB equation

被引:0
|
作者
Johann Radon Institute for Computational and Applied Mathematics , Austrian Academy of Sciences, Altenberger Straße 69, Linz [1 ]
4040, Austria
不详 [2 ]
8010, Austria
不详 [3 ]
91762, France
机构
来源
Control Optimisation Calc. Var. | / 2卷 / 442-464期
关键词
Engineering Village;
D O I
暂无
中图分类号
学科分类号
摘要
Discretization method - Dynamic programming principle - Feedback control problem - Hamilton Jacobi Bellman equation - High dimensional spaces - Optimal controls - Optimal feedback control - Spectral element
引用
收藏
相关论文
共 50 条
  • [21] Stochastic control of network systems II: NETCAD optimal control & the HJB equation
    Ma, Zhongjing
    Caines, Peter E.
    Malhame, Roland P.
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 3239 - +
  • [22] On computation of optimal switching HJB equation
    Zhang, Huan
    James, Matthew R.
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 2704 - 2709
  • [23] TIME-INCONSISTENT OPTIMAL CONTROL PROBLEMS AND THE EQUILIBRIUM HJB EQUATION
    Yong, Jiongmin
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2012, 2 (03) : 271 - 329
  • [24] HJB EQUATIONS FOR THE OPTIMAL CONTROL OF DIFFERENTIAL EQUATIONS WITH DELAYS AND STATE CONSTRAINTS, II: VERIFICATION AND OPTIMAL FEEDBACKS
    Federico, Salvatore
    Goldys, Ben
    Gozzi, Fausto
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (06) : 2378 - 2414
  • [25] HJB equations for the optimal control of differential equations with delays and state constraints, ii: Verification and optimal feedbacks
    Laboratoire de Probabilités et Modeles Aléatoires, Université de Paris Diderot , Alma Research SAS, Paris, France
    不详
    不详
    不详
    SIAM J Control Optim, 6 (2378-2414):
  • [26] NONCONVEX DUALITY AND SEMICONTINUOUS PROXIMAL SOLUTIONS OF HJB EQUATION IN OPTIMAL CONTROL
    Serhani, Mustapha
    Raissi, Nadia
    RAIRO-OPERATIONS RESEARCH, 2009, 43 (02) : 201 - 214
  • [27] On the feedback control of the wave equation
    Alli, H
    Singh, T
    PROCEEDINGS OF THE 1996 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, 1996, : 291 - 296
  • [28] On the feedback control of the wave equation
    Alli, H
    Singh, T
    JOURNAL OF SOUND AND VIBRATION, 2000, 234 (04) : 625 - 640
  • [29] Solving nonlinear wave equations by elliptic equation
    Fu, ZT
    Liu, SD
    Liu, SK
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2003, 39 (05) : 531 - 536
  • [30] HJB Optimal Feedback Control with Deep Differential Value Functions and Action Constraints
    Lutter, Michael
    Belousov, Boris
    Listmann, Kim
    Clever, Debora
    Peters, Jan
    CONFERENCE ON ROBOT LEARNING, VOL 100, 2019, 100