Parameter estimation in linear regression under arbitrary interference

被引:0
|
作者
Granichin, O.N. [1 ]
机构
[1] Sankt-Peterburgskij GU, Sankt-Peterburg, Russia
来源
关键词
Estimation - Mathematical models - Random processes - Signal interference;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of parameters estimation is considered for linear regression with arbitrary interference. It is assumed that interference average value may be unknown and differ from zero. The interference may be a realization of correlated random process as well or may be given by an unknown but limited deterministic function.
引用
收藏
页码:30 / 41
相关论文
共 50 条
  • [32] Estimation from transformed data under the linear regression model
    Liski, EP
    Trenkler, G
    Gross, J
    STATISTICS, 1997, 29 (03) : 205 - 219
  • [33] Testimation in Regression Parameter Estimation
    Department of Statistics, University of Clifornia, Riverside, CA, United States
    不详
    Biom. J., 7 (809-817):
  • [34] Testimation in regression parameter estimation
    Rahman, M
    Gokhale, DV
    BIOMETRICAL JOURNAL, 1996, 38 (07) : 809 - 817
  • [35] Guaranteed estimation of linear regression parameters under dependent disturbances
    Konev, VV
    Pergamenshchikov, M
    AUTOMATION AND REMOTE CONTROL, 1997, 58 (02) : 213 - 223
  • [36] Robust parameter estimation of regression models under weakened moment assumptions
    Li, Kangqiang
    Tang, Songqiao
    Zhang, Lixin
    STATISTICS & PROBABILITY LETTERS, 2022, 191
  • [37] Competing Hazards Regression Parameter Estimation Under Different Informative Priors
    Rehman, H.
    Chandra, Navin
    Hosseini-Baharanchi, Fatemeh Sadat
    Baghestani, Ahmad Reza
    JOURNAL OF RELIABILITY AND STATISTICAL STUDIES, 2020, 13 (02): : 325 - 348
  • [38] OPTIMAL ESTIMATION METHODS UNDER WEAKENED LINEAR RESTRICTIONS IN REGRESSION
    TOUTENBURG, H
    TRENKLER, G
    LISKI, E
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1992, 14 (04) : 527 - 536
  • [39] Ridge parameter estimation for the linear regression model under different loss functions using T-K approximation
    Ramzan, Qasim
    Akram, Muhammad Nauman
    Amin, Muhammad
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (09) : 4361 - 4377
  • [40] Parameter estimation of the storage function model using fuzzy linear regression approach
    Sujono, J
    Shikasho, S
    Hiramatsu, K
    COMPUTATIONAL METHODS IN WATER RESOURCES, VOLS 1 AND 2, PROCEEDINGS, 2002, 47 : 1565 - 1572