3D printed polycaprolactone/gelatin/ordered mesoporous calcium magnesium silicate nanocomposite scaffold for bone tissue regeneration

被引:1
|
作者
Mirzavandi, Zahra [1 ]
Poursamar, Seyed Ali [1 ]
Amiri, Farshad [1 ]
Bigham, Ashkan [2 ,3 ]
Rafienia, Mohammad [1 ,4 ]
机构
[1] Isfahan Univ Med Sci, Dept Biomat & Tissue Engn, Sch Adv Technol Med, Esfahan, Iran
[2] CNR, Inst Polymers Composites & Biomat, Naples, Italy
[3] Univ Naples Federico II, Dept Chem Mat & Prod Engn, Naples, Italy
[4] Isfahan Univ Med Sci, Biosensor Res Ctr, Esfahan, Iran
关键词
DELIVERY; DIFFERENTIATION; DEGRADABILITY; BIOMATERIALS; BIOACTIVITY; COMPOSITE; STRONTIUM; BEHAVIOR; GELATIN; SOLVENT;
D O I
10.1007/s10856-024-06828-5
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Tissue engineering scaffolds are three-dimensional structures that provide an appropriate environment for cellular attachment, proliferation, and differentiation. Depending on their specific purpose, these scaffolds must possess distinct features, including appropriate mechanical properties, porosity, desired degradation rate, and cell compatibility. This investigation aimed to fabricate a new nanocomposite scaffold using a 3D printing technique composed of poly(epsilon-caprolactone) (PCL)/Gelatin (GEL)/ordered mesoporous calcium-magnesium silicate (om-CMS) particles. Different weight ratios of om-CMS were added and optimized, and a series of scaffolds were constructed for comparison purposes, including PCL 50%/Gel 50%, PCL 50%/Gel 45%/om-CMS%5, and PCL 50%/Gel 40%/om-CMS%10. The optimized weight ratio of om-CMS was 10% without leaving behind negative effects on the filaments' structure. The scaffolds' physical and chemical properties were assessed using various techniques, and their degradation rate, bioactivity potential, cell viability, attachment, and ALP activity were evaluated in vitro. The results demonstrated that the PCL 50%/Gel 40%/om-CMS10% scaffold had promising potential for further studies in bone tissue regeneration.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Chitosan/MWCNTs nanocomposite coating on 3D printed scaffold of poly 3-hydroxybutyrate/magnetic mesoporous bioactive glass: A new approach for bone regeneration
    Azadani, Reyhaneh Nasr
    Karbasi, Saeed
    Poursamar, Ali
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 260
  • [32] Vascularized bone regeneration accelerated by 3D-printed nanosilicate-functionalized polycaprolactone scaffold
    Xu, Xiongcheng
    Xiao, Long
    Xu, Yanmei
    Zhuo, Jin
    Yang, Xue
    Li, Li
    Xiao, Nianqi
    Tao, Jing
    Zhong, Quan
    Li, Yanfen
    Chen, Yuling
    Du, Zhibin
    Luo, Kai
    REGENERATIVE BIOMATERIALS, 2021, 8 (06)
  • [33] 3D printed polycaprolactone scaffold incorporated with tragacanth gum/ bioactive glass and cellulose nanocrystals for bone tissue engineering
    Janmohammadi, Mahsa
    Nourbakhsh, Mohammad Sadegh
    Bahraminasab, Marjan
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 305
  • [34] Carboxymethyl carrageenan immobilized on 3D-printed polycaprolactone scaffold for the adsorption of calcium phosphate/strontium phosphate adapted to bone regeneration
    Ataie, Maryam
    Nourmohammadi, Jhamak
    Seyedjafari, Ehsan
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 206 : 861 - 874
  • [35] 3D printed polylactic acid/polyethylene glycol/bredigite nanocomposite scaffold enhances bone tissue regeneration via promoting osteogenesis and angiogenesis
    Salehi, Saiedeh
    Ghomi, Hamed
    Hassanzadeh-Tabrizi, S. A.
    Koupaei, Narjes
    Khodaei, Mohammad
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 281
  • [36] Fabrication and Characterization of 3D Nanostructured Polycaprolactone-Gelatin/Nanohydroxyapatite-Nanoclay Scaffolds for Bone Tissue Regeneration
    Saba Nazari
    Mitra Naeimi
    Mohammad Rafienia
    Majid Monajjemi
    Journal of Polymers and the Environment, 2024, 32 : 94 - 110
  • [37] Fabrication and Characterization of 3D Nanostructured Polycaprolactone-Gelatin/Nanohydroxyapatite-Nanoclay Scaffolds for Bone Tissue Regeneration
    Nazari, Saba
    Naeimi, Mitra
    Rafienia, Mohammad
    Monajjemi, Majid
    JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2024, 32 (01) : 94 - 110
  • [38] Design of a Novel 3D Printed Bioactive Nanocomposite Scaffold for Improved Osteochondral Regeneration
    Castro, Nathan J.
    Patel, Romil
    Zhang, Lijie Grace
    CELLULAR AND MOLECULAR BIOENGINEERING, 2015, 8 (03) : 416 - 432
  • [39] Design of a Novel 3D Printed Bioactive Nanocomposite Scaffold for Improved Osteochondral Regeneration
    Nathan J. Castro
    Romil Patel
    Lijie Grace Zhang
    Cellular and Molecular Bioengineering, 2015, 8 : 416 - 432
  • [40] Fabrication and properties of 3D printed zirconia scaffold coated with calcium silicate/hydroxyapatite
    Zhang, Hanxu
    Jiao, Chen
    He, Zhijing
    Ge, Mengxing
    Tian, Zongjun
    Wang, Changjiang
    Wei, Zhen
    Shen, Lida
    Liang, Huixin
    CERAMICS INTERNATIONAL, 2021, 47 (19) : 27032 - 27041