Predicting Nash Equilibria in Bimatrix Games Using a Robust Bichannel Convolutional Neural Network

被引:0
|
作者
Wu D. [1 ]
Lisser A. [1 ]
机构
[1] Université Paris-Saclay, CNRS, Centrale Supélec, Laboratoire des Signaux et Systémes, Gif-sur-Yvette
来源
关键词
Bimatrix game; convolutional neural network; Lemke-Howson (LH) algorithm; Nash equilibrium;
D O I
10.1109/TAI.2023.3321584
中图分类号
学科分类号
摘要
In this article, we consider the problem of finding a Nash equilibrium in bimatrix games. Traditional solution methods, including the Lemke-Howson (LH) algorithm and enumeration methods, rely on iterative approaches, which leads to computational inefficiency, especially when dealing with multiple instances. To address this problem, we introduce a bichannel convolutional neural network (BiCNN) that receives a bimatrix game as an input and generates two mixed strategies as a predicted Nash equilibrium. To improve the robustness of the BiCNN model, we propose a novel training algorithm that uses bimatrix games generated from different game sizes and probability distributions. Finally, our experimental results show that the proposed approach offers a significant computational advantage while maintaining acceptable prediction accuracy. © 2020 IEEE.
引用
收藏
页码:2358 / 2370
页数:12
相关论文
共 50 条
  • [21] Search for Nash Equilibria in Bimatrix Games with Probability and Quantile Payoff Functions
    S. V. Ivanov
    S. D. Merzlikina
    Automation and Remote Control, 2021, 82 : 2125 - 2142
  • [22] The limit distribution of pure strategy Nash equilibria in symmetric bimatrix games
    Stanford, W
    MATHEMATICS OF OPERATIONS RESEARCH, 1996, 21 (03) : 726 - 733
  • [23] Search for Nash Equilibria in Bimatrix Games with Probability and Quantile Payoff Functions
    Ivanov, S., V
    Merzlikina, S. D.
    AUTOMATION AND REMOTE CONTROL, 2021, 82 (12) : 2125 - 2142
  • [24] A new evolutionary approach for computing Nash equilibria in bimatrix games with known support
    Boryczka, Urszula
    Juszczuk, Przemyslaw
    OPEN COMPUTER SCIENCE, 2012, 2 (02) : 128 - 142
  • [25] Sufficient conditions for the existence of Nash equilibria in bimatrix games in terms of forbidden subgames
    Boros, Endre
    Elbassioni, Khaled
    Gurvich, Vladimir
    Makino, Kazuhisa
    Oudalov, Vladimir
    INTERNATIONAL JOURNAL OF GAME THEORY, 2016, 45 (04) : 1111 - 1131
  • [26] Nash equilibria in location games on a network
    Mercedes Pelegrín
    Blas Pelegrín
    OR Spectrum, 2017, 39 : 775 - 791
  • [27] Nash equilibria in location games on a network
    Pelegrin, Mercedes
    Pelegrin, Blas
    OR SPECTRUM, 2017, 39 (03) : 775 - 791
  • [28] Computing the equilibria of bimatrix games using dominance heuristics
    Aras, Raghav
    Dutech, Alain
    Charpillet, Francois
    ICTAI-2006: EIGHTEENTH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, : 773 - +
  • [29] Computing Nash Equilibria in Bimatrix Games: GPU-Based Parallel Support Enumeration
    Rampersaud, Safraz
    Mashayekhy, Lena
    Grosu, Daniel
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2014, 25 (12) : 3111 - 3123
  • [30] Efficient computation of Nash equilibria for very sparse win-lose bimatrix games
    Codenotti, Bruno
    Leoncini, Mauro
    Resta, Giovanni
    ALGORITHMS - ESA 2006, PROCEEDINGS, 2006, 4168 : 232 - 243