The linear complexity of the generalized self-shrinking generator on GF(q)

被引:0
|
作者
Wang, Hui-Juan [1 ]
Wang, Jin-Ling [1 ]
机构
[1] Mathematics Department, Zhengzhou University, Zhengzhou, Henan 450001, China
来源
关键词
Shrinkage;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose is to discuss the linear complexity of the generalized self-shrinking generator which is based on the m-sequences of GF(q), and analyze the linear complexity on the condition when prime q greater than 3. Reach the upper bound of the generalized self-shrinking generator linear complexity on GF(3), and diminish the linear complexity upper bound. The linear complexity upper bound on GF(q) can have better accurate value.
引用
收藏
页码:414 / 418
相关论文
共 50 条
  • [21] The t-Modified Self-Shrinking Generator
    Cardell, Sara D.
    Fuster-Sabater, Amparo
    COMPUTATIONAL SCIENCE - ICCS 2018, PT I, 2018, 10860 : 653 - 663
  • [22] Weak generalized self-shrinking generators
    Dong Lihua
    Hu Yupu
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2007, 18 (02) : 407 - 411
  • [23] SELECTION OF THE LINEAR COMBINING VECTOR G OF THE GENERALIZED SELF-SHRINKING GENERATORS
    Dong Lihua Zeng Yong Hu Yupu The Key Lab of Computer Networks and Information Security the Ministry of Education Xidian University Xian China
    JournalofElectronics, 2006, (04) : 506 - 509
  • [24] Cryptanalytic Attack on the Self-Shrinking Sequence Generator
    Eugenia Pazo-Robles, Maria
    Fuster-Sabater, Amparo
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT II, 2011, 6594 : 285 - +
  • [25] Security analysis of a variant of self-shrinking generator
    Lee, Dong Hoon
    Park, Je Hong
    Han, Jae Woo
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2008, E91A (07) : 1824 - 1827
  • [26] A note on self-shrinking lagged Fibonacci generator
    Chetry, Moon K.
    Vasantha Kandaswamy, W.B.
    International Journal of Network Security, 2010, 11 (01) : 58 - 60
  • [27] Two new attacks on the self-shrinking generator
    Hell, Martin
    Johansson, Thomas
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (08) : 3837 - 3843
  • [28] Randomness Analysis for the Generalized Self-Shrinking Sequences
    Cardell, Sara D.
    Requena, Veronica
    Fuster-Sabater, Amparo
    Orue, Amalia B.
    SYMMETRY-BASEL, 2019, 11 (12):
  • [29] Distinguishing attacks on generalized self-shrinking generators
    Li, Xuelian
    Gao, Juntao
    Hu, Yupu
    Zhang, Fengrong
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2012, 39 (04): : 114 - 119
  • [30] 2-Adic Complexity of Self-Shrinking Sequence
    Wang, Huijuan
    Wen, Qiaoyan
    Zhang, Jie
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2011, E94A (11): : 2462 - 2465