A modified particle swarm optimisation algorithm and its application in vehicle lightweight design

被引:0
|
作者
Liu Z. [1 ]
Zhu P. [1 ]
Zhu C. [1 ]
Chen W. [2 ]
Yang R.-J. [3 ]
机构
[1] State Key Laboratory of Mechanical System and Vibration, Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai
[2] Department of Mechanical Engineering, Northwestern University, 2145 Sheridan RD Tech B224, Evanston, 60201, IL
[3] Research and Advanced Engineering, Ford Motor Company, Dearborn, 48121, MI
关键词
An adaptive mutation operator; Crashworthiness; Global optimisation; OLHD; Optimal Latin hypercube design; Particle swarm optimisation; PSO; Vehicle lightweight design;
D O I
10.1504/IJVD.2017.082584
中图分类号
学科分类号
摘要
Particle swarm optimisation (PSO) is a global optimisation algorithm, which imitates the cooperation behaviour reflected in flocks of birds, fishes, etc. Because of its simple implementation and strong optimisation capacity, the PSO algorithm is becoming very popular in diverse engineering design applications. However, PSO is also seriously affected by the premature convergence problem similar to other global optimisation algorithms. It is generally known that diversity loss is one of the crucial impact factors. To improve the diversity of particles and enhance the algorithm's optimisation ability, the standard PSO algorithm is improved by a mutation operator, the optimal Latin hypercube design (OLHD) technique and boundary reflection method. Optimisation ability of the modified PSO is superior to the standard version through experimental comparison of eight benchmark functions. Combined with kriging surrogate model technique, the modified PSO algorithm is applied to a vehicle lightweight design problem. The frontal structure achieves 5.06 kg (13.95%) weight saving without performances loss after being optimised. Copyright © 2017 Inderscience Enterprises Ltd.
引用
收藏
页码:116 / 135
页数:19
相关论文
共 50 条
  • [31] The Improvement of Hybrid Particle Swarm algorithm and its application
    Zou Shurong
    Ding Pengxin
    Zhang Hongwei
    COMPUTATIONAL MATERIALS SCIENCE, PTS 1-3, 2011, 268-270 : 798 - 802
  • [32] Simplex particle swarm optimization algorithm and its application
    Chen, Guo-Chu
    Yu, Jin-Shou
    Xitong Fangzhen Xuebao / Journal of System Simulation, 2006, 18 (04): : 862 - 865
  • [33] A modified particle swarm optimization scheme and its application in electronic heat sink design
    Alrasheed, M. R.
    de Silva, C. W.
    Gadala, M. S.
    IPACK 2007: PROCEEDINGS OF THE ASME INTERPACK CONFERENCE 2007, VOL 1, 2007, : 627 - 636
  • [34] A Dynamic Neighbourhood Particle Swarm Optimisation Algorithm for Constrained Optimisation
    Li, Lily D.
    Yu, Xinghuo
    Li, Xiaodong
    Guo, William
    IECON 2011: 37TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2011,
  • [35] Fitness estimation and the particle swarm optimisation algorithm
    Hendtlass, Tim
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 4266 - 4272
  • [36] A Modified Particle Swarm Optimization Algorithm using Uniform Design
    Al-Mter, Adel H.
    Lu, Song-Feng
    2016 INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND ARTIFICIAL INTELLIGENCE (ISAI 2016), 2016, : 432 - 435
  • [37] Particle swarm optimisation algorithm with forgetting character
    Yuan, Dai-lin
    Chen, Qiu
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2010, 2 (01) : 59 - 64
  • [39] Research on application of optimal particle swarm optimisation algorithm in logistics route improvement
    Wang X.
    International Journal of Information Technology and Management, 2023, 22 (3-4) : 301 - 314
  • [40] The optimal design of bellows using a novel discrete particle swarm optimisation algorithm
    Zhang, Li
    Lu, Jingui
    Yu, Ying
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2014, 5 (01) : 48 - 60