Reductions of the Volterra lattice

被引:7
|
作者
Svinin, A.K. [1 ]
机构
[1] Inst. Syst. Dynam. and Contr. Theor., Siberian Branch, Russian Academy of Sciences, PO Box 1233, 664033 Irkutsk, Russia
关键词
D O I
10.1016/j.physleta.2005.01.063
中图分类号
学科分类号
摘要
We exhibit three classes of algebraic constraints which are shown compatible with Volterra lattice. © 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:197 / 202
相关论文
共 50 条
  • [41] Reductions of lattice mKdV to q-PVI
    Ormerod, Christopher M.
    PHYSICS LETTERS A, 2012, 376 (45) : 2855 - 2859
  • [42] Nonextensivity of the cyclic lattice Lotka-Volterra model
    Tsekouras, GA
    Provata, A
    Tsallis, C
    PHYSICAL REVIEW E, 2004, 69 (01): : 7
  • [43] Fractal properties of the lattice Lotka-Volterra model
    Tsekouras, GA
    Provata, A
    PHYSICAL REVIEW E, 2002, 65 (01):
  • [44] Backlund transformation for solutions of the modified Volterra lattice equation
    Kajinaga, Y
    Wadati, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (01) : 51 - 54
  • [45] The Liouville integrability of integrable couplings of Volterra lattice equation
    Zhao, Qiu-lan
    Xu, Xi-Xiang
    Li, Xin-Yue
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (06) : 1664 - 1675
  • [46] Integrable nonholonomic deformation of modified Volterra lattice equation
    Zhao, Hai-qiong
    APPLIED MATHEMATICS LETTERS, 2019, 94 : 286 - 291
  • [47] Characterizations of Δ-Volterra lattice: A symmetric orthogonal polynomials interpretation
    Area, I.
    Branquinho, A.
    Foulquie Moreno, A.
    Godoy, E.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (01) : 243 - 259
  • [48] Twisted reductions of integrable lattice equations, and their Lax representations
    Ormerod, Christopher M.
    van der Kamp, Peter H.
    Hietarinta, Jarmo
    Quispel, G. R. W.
    NONLINEARITY, 2014, 27 (06) : 1367 - 1390
  • [49] Discrete Hirota reductions associated with the lattice KdV equation
    Hone, Andrew N. W.
    Kouloukas, Theodoros E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (36)
  • [50] partial derivative-Reductions of the multidimensional quadrilateral lattice. : The multidimensional circular lattice
    Doliwa, A
    Manakov, SV
    Santini, PM
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 196 (01) : 1 - 18