Barycentric-thiele type blending rational interpolation

被引:0
|
作者
Jiang, Ping [1 ]
Shi, Manhong [2 ]
机构
[1] School of Mathematics, Hefei University of Technology, Hefei, China
[2] College of Mathematics, Anhui Science and Technology University, Fengyang, China
来源
关键词
D O I
10.12733/jics20105556
中图分类号
学科分类号
摘要
引用
收藏
页码:1731 / 1738
相关论文
共 50 条
  • [21] RATIONAL INTERPOLATION USING INCOMPLETE BARYCENTRIC FORMS
    SALZER, HE
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1981, 61 (03): : 161 - 164
  • [22] Recent advances in linear barycentric rational interpolation
    Berrut, Jean-Paul
    Klein, Georges
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 95 - 107
  • [23] An algorithm for best rational approximation based on barycentric rational interpolation
    Clemens Hofreither
    Numerical Algorithms, 2021, 88 : 365 - 388
  • [24] Image Zooming Using Barycentric Rational Interpolation
    Zaini, A. M. Esmaili
    Loghmani, G. Barid
    Latif, A. M.
    Karbassi, S. M.
    JOURNAL OF MATHEMATICAL EXTENSION, 2018, 12 (04) : 67 - 86
  • [25] An iterative approach to barycentric rational Hermite interpolation
    Cirillo, Emiliano
    Hormann, Kai
    NUMERISCHE MATHEMATIK, 2018, 140 (04) : 939 - 962
  • [26] An algorithm for best rational approximation based on barycentric rational interpolation
    Hofreither, Clemens
    NUMERICAL ALGORITHMS, 2021, 88 (01) : 365 - 388
  • [27] On the numerical stability of linear barycentric rational interpolation
    Chiara Fuda
    Rosanna Campagna
    Kai Hormann
    Numerische Mathematik, 2022, 152 : 761 - 786
  • [28] Successive Newton-Thiele's rational interpolation
    Tan, Jie-Qing
    Zhao, Qian-Jin
    Journal of Information and Computational Science, 2005, 2 (02): : 295 - 301
  • [29] Barycentric rational interpolation at quasi-equidistant nodes
    Hormann, Kai
    Klein, Georges
    De Marchi, Stefano
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2012, 5 : 1 - 6