General form of (α, β)-fuzzy congruence relation on lattice implication algebras

被引:0
|
作者
Xu, Jiabin [1 ]
Liu, Yi [1 ,2 ]
机构
[1] College of Mathematics and Information Science, Neijiang Normal University, Neijiang 641000, China
[2] Intelligent Control Development Center, Southwest Jiaotong University, Chengdu 610031, China
来源
关键词
Fuzzy inference;
D O I
10.12733/jcis6391
中图分类号
学科分类号
摘要
(α, β)-fuzzy congruence relation on lattice implication algebras are further investigated and their properties are discussed, where α, β ∈ {∈h, qδ, ∈h Vqδ, Λqδ} but α≠∈hΛqδ, which are generalization of (∈, ∈ Vq)-fuzzy congruence relation. Some characterizations for an (α, β)-fuzzy congruence relation on L to be a congruence and a fuzzy congruence on L are derived. © 2013 by Binary Information Press.
引用
收藏
页码:5213 / 5219
相关论文
共 50 条
  • [21] Notes on redefined fuzzy implicative filters of lattice implication algebras
    Zhan, Jianming
    Jun, Young Bae
    INFORMATION SCIENCES, 2009, 179 (18) : 3182 - 3186
  • [22] Some kinds of falling fuzzy filters of lattice implication algebras
    MA Xue-ling
    ZHAN Jian-ming
    JUN Young-Bae
    Applied Mathematics:A Journal of Chinese Universities, 2015, (03) : 299 - 316
  • [23] Some kinds of falling fuzzy filters of lattice implication algebras
    MA Xueling
    ZHAN Jianming
    JUN YoungBae
    AppliedMathematics:AJournalofChineseUniversities(SeriesB), 2015, 30 (03) : 299 - 316
  • [24] Interval valued (∈,∈∨ q)-fuzzy filters of lattice implication algebras
    Peng Jiayin
    2010 THE 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION (PACIIA2010), VOL IV, 2010, : 224 - 227
  • [25] The L-Fuzzy Filters and F-Fuzzy Ideals of Lattice Implication Algebras
    Zhao, Guangfeng
    PROCEEDINGS OF 2010 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY (ICCSIT 2010), VOL 6, 2010, : 217 - 219
  • [26] Quasivarieties and Congruence Permutability of Lukasiewicz Implication Algebras
    Campercholi, M.
    Castano, D.
    Diaz Varela, J. P.
    STUDIA LOGICA, 2011, 98 (1-2) : 267 - 283
  • [27] Quasivarieties and Congruence Permutability of Łukasiewicz Implication Algebras
    M. Campercholi
    D. Castaño
    J. P. Díaz Varela
    Studia Logica, 2011, 98 : 267 - 283
  • [28] Soft Lattice Implication Algebras
    Liu, Yi
    Qin, Ya
    Qin, Xiaoyan
    Xu, Yang
    APPLIED INFORMATICS AND COMMUNICATION, PT 4, 2011, 227 : 128 - +
  • [29] Soft lattice implication algebras
    Peng Jiayin
    2010 THE 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION (PACIIA2010), VOL IV, 2010, : 228 - 231
  • [30] On derivations of lattice implication algebras
    Lee, Sang Deok
    Kim, Kyung Ho
    ARS COMBINATORIA, 2013, 108 : 279 - 288