Robust pavement crack segmentation network based on transformer and dual-branch decoder

被引:0
|
作者
Yu, Zhenwei [1 ,2 ]
Chen, Qinyu [3 ]
Shen, Yonggang [1 ,4 ]
Zhang, Yiping [1 ,4 ]
机构
[1] Zhejiang Univ, Coll Civil Engn & Architecture, Hangzhou, Peoples R China
[2] Zhejiang Univ, Balance Architecture, Hangzhou, Peoples R China
[3] Zhejiang Inst Commun Co Ltd, Hangzhou, Peoples R China
[4] Zhejiang Univ, Innovat Ctr Yangtze River Delta, Hangzhou, Peoples R China
关键词
Pavement crack; Transformer block; Crack segmentation; Computer vision; Feature extraction;
D O I
10.1016/j.conbuildmat.2024.139026
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The application of deep learning techniques for semantic segmentation of crack images has become a significant research direction in road maintenance and safety. Despite the extensive research in recent years on semantic segmentation algorithms based on convolutional neural networks, their relatively small actual receptive fields cannot effectively handle long and fine pavement cracks. In contrast, transformer-based models can effectively utilize contextual semantic information. Therefore, a robust pavement crack segmentation network, CSTF, is proposed based on the Swin Transformer encoder. Within CSTF, a feature pyramid pooling module is introduced to provide global priors, and a dual-branch decoder is designed to preserve and learn semantic information, enabling CSTF to handle large-scale images and wide-spanning cracks. The results demonstrate that CSTF achieved an mIoU of 0.813 and 22.97 FPS on the large-scale dataset constructed in this study, enabling highprecision real-time detection. Moreover, it exhibits robustness against common interfering patterns like striped patches or other disturbances found in pavement crack images.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A dual-branch hybrid network of CNN and transformer with adaptive keyframe scheduling for video semantic segmentation
    Zhixue Liang
    Wenyong Dong
    Bo Zhang
    Multimedia Systems, 2024, 30
  • [22] Dual-branch residual network for lung nodule segmentation
    Cao, Haichao
    Liu, Hong
    Song, Enmin
    Hung, Chih-Cheng
    Ma, Guangzhi
    Xu, Xiangyang
    Jin, Renchao
    Lu, Jianguo
    Liu, Hong (hl.cbib@gmail.com), 1600, Elsevier Ltd (86):
  • [23] TGDAUNet: Transformer and GCNN based dual-branch attention UNet for medical image segmentation
    Song, Pengfei
    Li, Jinjiang
    Fan, Hui
    Fan, Linwei
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 167
  • [24] CosineTR: A dual-branch transformer-based network for semantic line detection
    Zhang, Yuqi
    Ma, Bole
    Jin, Luyang
    Yang, Yuancheng
    Tong, Chao
    PATTERN RECOGNITION, 2025, 158
  • [25] Micro-expression Recognition Based on Dual-Branch Swin Transformer Network
    Xie, Zhihua
    Zhao, Chuwei
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT II, 2023, 14087 : 544 - 554
  • [26] Dual-branch feature Reinforcement Transformer for preoperative parathyroid gland segmentation
    Lyu, Lei
    Pang, Chen
    Yang, Qinghan
    Liu, Kailin
    Geng, Chong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 140
  • [27] Dual-branch Transformer for semi-supervised medical image segmentation
    Huang, Xiaojie
    Zhu, Yating
    Shao, Minghan
    Xia, Ming
    Shen, Xiaoting
    Wang, Pingli
    Wang, Xiaoyan
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2024, 25 (10):
  • [28] A Dual-Branch Multiscale Transformer Network for Hyperspectral Image Classification
    Shi, Cuiping
    Yue, Shuheng
    Wang, Liguo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 20
  • [29] A SAM-based dual-branch network for remote sensing semantic segmentation
    Zhang, Hui
    REMOTE SENSING LETTERS, 2025, 16 (04) : 365 - 375
  • [30] Dual-branch collaborative transformer for effective
    Qi, Xuanyu
    Song, Tianyu
    Dong, Haobo
    Jin, Jiyu
    Jin, Guiyue
    Li, Pengpeng
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 100