Non-Linear effects at differentiable-non-differentiable scale transition in complex fluids

被引:0
|
作者
Solovastru L.-G. [1 ]
Ghizdova V. [2 ]
Nedeff V. [3 ]
Lazar G. [3 ]
Eva L. [4 ]
Ochiuz L. [5 ]
Agop M. [6 ]
Popa R.F. [7 ]
机构
[1] Department of Dermatology, University of Medicine, Pharmacy Gr. T. Popa University
[2] Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Carol I Bvd, No. 11, Iasi
[3] Vasile Alecsandri University of Bacau, Department of Engineering, Bacau
[4] Emergency Clinical Hospital Prof. Dr. Nicolae Oblu, Ateneului 2, Iasi
[5] Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Medicine and Pharmacy, Gr. T. Popa University, Iasi
[6] Physics Department, Gheorghe Asachi Technical University, Professor Dr. Docent Dimitrie Mangeron Rd., No. 59A, Iasi
[7] Surgery Department, University of Medicine, Pharmacy Gr. T. Popa University, Iasi
关键词
Complex Fluid; Non-Standard Scale Relativity Theory; Soliton and Soliton-Kink Solutions;
D O I
10.1166/jctn.2016.4099
中图分类号
学科分类号
摘要
Various theoretical aspects of complex fluid dynamics at the differentiable-non-differentiable scale transition using the Non-Standard Scale Relativity Theory are analyzed. In the stationary case, soliton and soliton-kink solutions of the velocity field are obtained. These solutions imply at nanoscale pair and anionic type conduction mechanisms. © 2016 American Scientific Publishers All rights reserved.
引用
收藏
页码:1 / 6
页数:5
相关论文
共 50 条
  • [31] Resolution-scale relativistic formulation of non-differentiable mechanics
    Teh, Mei-Hui
    Nottale, Laurent
    LeBohec, Stephan
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (09):
  • [32] Non-Differentiable Function Tracking
    Kamal, Shyam
    Yu, Xinghuo
    Sharma, Rahul Kumar
    Mishra, Jyoti
    Ghosh, Sandip
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2019, 66 (11) : 1835 - 1839
  • [33] A note on the non differentiable function of Weierstrass
    Wintner, A
    AMERICAN JOURNAL OF MATHEMATICS, 1933, 55 : 603 - 605
  • [34] Resolution-scale relativistic formulation of non-differentiable mechanics
    Mei-Hui Teh
    Laurent Nottale
    Stephan LeBohec
    The European Physical Journal Plus, 134
  • [35] Non-differentiable symmetric duality
    Mond, B
    Schechter, M
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 53 (02) : 177 - 188
  • [36] Non-differentiable optimisation for solution of large scale planning problems
    Tahmassebi, T
    COMPUTERS & CHEMICAL ENGINEERING, 1999, 23 : S503 - S506
  • [37] Scale relativity and non-differentiable fractal space-time
    Nottale, L
    FRONTIERS OF FUNDAMENTAL PHYSICS 4, 2001, : 65 - 79
  • [38] Renormalisation of non-differentiable potentials
    Alexandre, J.
    Defenu, N.
    Grigolia, G.
    Marian, I. G.
    Mdinaradze, D.
    Trombettoni, A.
    Turovtsi-Shiutev, Y.
    Nandori, I
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (07)
  • [39] THERMODYNAMICS OF NON-DIFFERENTIABLE SYSTEMS
    BOYLING, JB
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1974, 9 (06) : 379 - 392
  • [40] Non-abelian differentiable gerbes
    Laurent-Gengoux, Camille
    Stienon, Mathieu
    Xu, Ping
    ADVANCES IN MATHEMATICS, 2009, 220 (05) : 1357 - 1427