Prediction of bending force in the hot strip rolling process using artificial neural network and genetic algorithm (ANN-GA)

被引:0
|
作者
机构
[1] Wang, Zhen-Hua
[2] Gong, Dian-Yao
[3] Li, Xu
[4] Li, Guang-Tao
[5] Zhang, Dian-Hua
来源
Wang, Zhen-Hua (wangzhenhuaneu@yeah.net) | 1600年 / Springer London卷 / 93期
基金
中国国家自然科学基金;
关键词
Mean square error - Strip metal - Errors - Forecasting - Hot rolling - MATLAB - Neural networks - Population statistics;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:9 / 12
相关论文
共 50 条
  • [31] IMPROVING ESTIMATION ACCURACY OF METALLURGICAL PERFORMANCE OF INDUSTRIAL FLOTATION PROCESS BY USING HYBRID GENETIC ALGORITHM - ARTIFICIAL NEURAL NETWORK (GA-ANN)
    Allahkarami, Ebrahim
    Nuri, Omid Salmani
    Abdollahzadeh, Aliakbar
    Rezai, Bahram
    Maghsoudi, Behrouz
    PHYSICOCHEMICAL PROBLEMS OF MINERAL PROCESSING, 2017, 53 (01): : 366 - 378
  • [32] Prediction of hot flow stress of CrMoV steel using artificial neural network (ANN)
    Bapari, Afshin
    Najafizadeh, Abbas
    Moazeny, Mohamamid
    ISIJ INTERNATIONAL, 2007, 47 (08) : 1126 - 1130
  • [33] Optimization of functional properties of plasma treated kodo millet (open air multipin) using response surface methodology (RSM) and artificial neural network with genetic algorithm (ANN-GA)
    Jaddu, Samuel
    Abdullah, S.
    Dwivedi, Madhuresh
    Pradhan, Rama Chandra
    JOURNAL OF FOOD PROCESS ENGINEERING, 2023, 46 (10)
  • [34] A study on genetic algorithm to select architecture of a optimal neural network in the hot rolling process
    Son, JS
    Lee, DM
    Kim, IS
    Choi, SK
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2004, 153 : 643 - 648
  • [35] Prediction of Mechanical Properties of Low Carbon Steel in Hot Rolling Process Using Artificial Neural Network Model
    Saravanakumar, P.
    Jothimani, V.
    Sureshbabu, L.
    Ayyappan, S.
    Noorullah, D.
    Venkatakrishnan, P. G.
    INTERNATIONAL CONFERENCE ON MODELLING OPTIMIZATION AND COMPUTING, 2012, 38 : 3418 - 3425
  • [36] High-precision rolling force prediction model for hot strip continuous rolling process
    Li, Hai-Jun
    Xu, Jian-Zhong
    Wang, Guo-Dong
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2009, 30 (05): : 669 - 672
  • [37] Mathematical Modeling and Optimizing of in Vitro Hormonal Combination for G x N15 Vegetative Rootstock Proliferation Using Artificial Neural Network-Genetic Algorithm (ANN-GA)
    Arab, Mohammad M.
    Yadollahi, Abbas
    Ahmadi, Hamed
    Eftekhari, Maliheh
    Maleki, Masoud
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [38] Prediction of bioconcentration factor using genetic algorithm and artificial neural network
    Fatemi, MH
    Jalali-Heravi, M
    Konuze, E
    ANALYTICA CHIMICA ACTA, 2003, 486 (01) : 101 - 108
  • [39] Part II: Prediction of the dialysis process performance using Artificial Neural Network (ANN)
    Godini, H. R.
    Ghadrdan, M.
    Omidkhah, M. R.
    Madaeni, S. S.
    DESALINATION, 2011, 265 (1-3) : 11 - 21
  • [40] Artificial neural network-genetic algorithm (ANN-GA) based medium optimization for the production of human interferon gamma (hIFN-γ) in Kluyveromyces lactis cell factory
    Unni, Silpa
    Prabhu, Ashish A.
    Pandey, Rajat
    Hande, Rohit
    Veeranki, Venkata Dasu
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2019, 97 (04): : 843 - 858