Quantum criticality for few-body systems: Path-integral approach

被引:3
|
作者
Sauerwein, R.A. [1 ]
Kais, S. [1 ]
机构
[1] Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
关键词
Atoms - Bessel functions - Computer simulation - Conformal mapping - Convergence of numerical methods - Correlation methods - Eigenvalues and eigenfunctions - Ground state - Integral equations - Molecules - Phase transitions - Quantum theory;
D O I
10.1103/PhysRevE.64.056120
中图分类号
学科分类号
摘要
An attempt is made to illustrate that the mapping to a classical lattice system brings a more fundamental definition of phase transition, and consequently, other tools to find the transition points. In particular, it is shown that the classical lattice mapping using Feyman's path integral has a known scaling behavior when the principle is free.
引用
收藏
页码:1 / 056120
相关论文
共 50 条
  • [1] Quantum criticality for few-body systems: Path-integral approach
    Sauerwein, RA
    Kais, S
    PHYSICAL REVIEW E, 2001, 64 (05):
  • [2] SIMULATION OF QUANTUM MANY-BODY SYSTEMS BY PATH-INTEGRAL METHODS
    POLLOCK, EL
    CEPERLEY, DM
    PHYSICAL REVIEW B, 1984, 30 (05): : 2555 - 2568
  • [3] Critical Stability of Few-Body Quantum Systems
    Frederico, T.
    Fynbo, H. O. U.
    Kievsky, A.
    Richard, J. M.
    FEW-BODY SYSTEMS, 2025, 66 (01)
  • [4] PATH-INTEGRAL APPROACH TO PROBLEMS IN QUANTUM OPTICS
    HILLERY, M
    ZUBAIRY, MS
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1982, 72 (12) : 1818 - 1818
  • [5] Path-integral approach to a semiclassical stochastic description of quantum dissipative systems
    Casado-Pascual, J
    Denk, C
    Morillo, M
    Cukier, RI
    CHEMICAL PHYSICS, 2001, 268 (1-3) : 165 - 176
  • [6] PATH-INTEGRAL APPROACH TO PROBLEMS IN QUANTUM OPTICS
    HILLERY, M
    ZUBAIRY, MS
    PHYSICAL REVIEW A, 1982, 26 (01): : 451 - 460
  • [7] Majorana and the path-integral approach to quantum mechanics
    Esposito, S.
    Annales de la Fondation Louis de Broglie, 2006, 31 (2-3): : 207 - 225
  • [8] Field theory approach in few-body systems
    Tjon, JA
    FEW-BODY PROBLEMS IN PHYSICS '95, 1996, : 483 - 494
  • [9] Algebraic Approach to the Nuclear Few-Body Systems
    Stepsys, Augustinas
    Mickevicius, Saulius
    Germanas, Darius
    Kalinauskas, Ramutis Kazys
    FEW-BODY SYSTEMS, 2024, 65 (03)
  • [10] Highlights and prospects of hyperspherical approach in few-body quantum-mechanical systems
    Haysak, M
    Puga, P
    Nagy, M
    Onysko, V
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2003, 53 (11) : 1047 - 1052