Majorana and the path-integral approach to quantum mechanics

被引:0
|
作者
Esposito, S.
机构
[1] Dipartimento di Scienze Fisiche, Universit di Napoli Federico II, Via Cinthia, 80126 Napoli, Italy
[2] I.N.F.N. Sezione de Napoli, Complesso Universitario di M. S. Angelo, Via Cinthia, 80126 Napoli, Italy
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We report on a manuscript by Ettore Majorana, which probably corresponds to the text for a seminar delivered at the University of Naples in 1938, where he lectured on Theoretical Physics. Some passages reveal a physical interpretation of Quantum Mechanics which anticipates of several years the Feynman approach in terms of path integrals, independently of the underlying mathematical formulation.
引用
收藏
页码:207 / 225
相关论文
共 50 条
  • [1] QUASI-CLASSICAL PATH-INTEGRAL APPROACH TO SUPERSYMMETRIC QUANTUM-MECHANICS
    INOMATA, A
    JUNKER, G
    PHYSICAL REVIEW A, 1994, 50 (05): : 3638 - 3649
  • [2] Spectral properties of the symmetry generators of conformal quantum mechanics: A path-integral approach
    Camblong, H. E.
    Chakraborty, A.
    Duque, P. Lopez
    Ordonez, C. R.
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (09)
  • [3] PATH-INTEGRAL APPROACH TO THE STATISTICAL-MECHANICS OF SOLITONS
    LEUNG, KM
    PHYSICAL REVIEW B, 1982, 26 (01): : 226 - 244
  • [4] PATH-INTEGRAL APPROACH TO PROBLEMS IN QUANTUM OPTICS
    HILLERY, M
    ZUBAIRY, MS
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1982, 72 (12) : 1818 - 1818
  • [5] PATH-INTEGRAL APPROACH TO PROBLEMS IN QUANTUM OPTICS
    HILLERY, M
    ZUBAIRY, MS
    PHYSICAL REVIEW A, 1982, 26 (01): : 451 - 460
  • [6] Path-integral centroid methods in quantum statistical mechanics and dynamics
    Voth, GA
    ADVANCES IN CHEMICAL PHYSICS, VOL XCIII, 1996, 93 : 135 - 218
  • [7] PATH-INTEGRAL IN CONSTRAINED CLASSICAL MECHANICS
    ABRIKOSOV, AA
    PHYSICS LETTERS A, 1993, 182 (2-3) : 179 - 183
  • [8] Path-integral approach to the scattering theory of quantum transport
    Endesfelder, D
    PHYSICAL REVIEW B, 1998, 57 (19): : 12448 - 12455
  • [9] QUANTUM-MECHANICS OF MEASUREMENTS DISTRIBUTED IN TIME - A PATH-INTEGRAL FORMULATION
    CAVES, CM
    PHYSICAL REVIEW D, 1986, 33 (06): : 1643 - 1665
  • [10] Path integral approach to noncommutative quantum mechanics
    Dragovich, B
    Rakic, Z
    LIE THEORY AND ITS APPLICATIONS IN PHYSICS V, PROCEEDINGS, 2004, : 364 - 373