Momentum budget of the East Antarctic atmospheric boundary layer: Results of a regional climate model

被引:0
|
作者
van den Broeke, Michiel R. [1 ]
van Lipzig, N.P.M. [1 ]
van Meijgaard, E. [1 ]
机构
[1] Inst. for Marine/Atmospheric Res., Utrecht University, Utrecht, Netherlands
[2] Royal Netherlands Meteorol. Inst., de Bilt, Netherlands
关键词
Acceleration - Boundary layers - Climate change - Cooling - Deceleration - Sea ice - Velocity;
D O I
暂无
中图分类号
学科分类号
摘要
Output of a regional atmospheric climate model is used to quantify the average January and July momentum budget of the atmospheric boundary layer (ABL) over the East Antarctic ice sheet and the surrounding oceans. Results are binned in nine elevation intervals over the ice sheet and six distance intervals over the ocean. In January, when surface cooling is weak, the large-scale pressure gradient force dominates the ABL momentum budget. In July, under conditions of strong surface cooling, a shallow katabatic jet develops over the gentle slopes of the interior ice sheet and a strong, deep jet over the steep coastal slopes. In the coastal regions the ABL thickens considerably, caused by the piling up of cold air over the adjacent sea ice and ice shelves. This represents the main opposing force for the katabatic winds. Horizontal and vertical advection are generally small. In the cross-slope direction the momentum budget represents a simple balance between surface drag and Coriolis turning. Intraseasonal variability of the large-scale wind field in the ABL can be explained in terms of the strength of the polar vortex, the background baroclinicity, and the topography of the ice sheet. Subsidence is found over the interior ice sheet and rising motion in the coastal zone, reflecting the acceleration and deceleration of the katabatic circulation. However, vertical velocities are generally small, because the downslope mass flux in the ABL is confined to a shallow layer below the wind speed maximum.
引用
收藏
相关论文
共 50 条
  • [31] The stable atmospheric boundary layer over an Antarctic ice sheet
    Handorf, D
    Foken, T
    Kottmeier, C
    BOUNDARY-LAYER METEOROLOGY, 1999, 91 (02) : 165 - 189
  • [32] The Stable Atmospheric Boundary Layer over an Antarctic ice Sheet
    Dörthe Handorf
    Thomas Foken
    Christoph Kottmeier
    Boundary-Layer Meteorology, 1999, 91 : 165 - 189
  • [33] SNODAR II: PROBING THE ATMOSPHERIC BOUNDARY LAYER ON THE ANTARCTIC PLATEAU
    Bonner, C. S.
    Ashley, M. C. B.
    Lawrence, J. S.
    Luong-Van, D. M.
    Storey, J. W. V.
    OPTICAL TURBULENCE: ASTRONOMY MEETS METEOROLOGY, 2009, : 264 - 270
  • [34] Structure and dynamics of the summertime atmospheric boundary layer over the Antarctic Plateau: 2. Heat, moisture, and momentum budgets
    van As, D
    van den Broeke, MR
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D7)
  • [35] Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model
    van de Berg, W. J.
    van den Broeke, M. R.
    Reijmer, C. H.
    van Meijgaard, E.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D11)
  • [36] The atmospheric boundary layer in the CSIRO global climate model: simulations versus observations
    Garratt, JR
    Rotstayn, LD
    Krummel, PB
    CLIMATE DYNAMICS, 2002, 19 (5-6) : 397 - 415
  • [37] The atmospheric boundary layer in the CSIRO global climate model: simulations versus observations
    J. Garratt
    L. Rotstayn
    P. Krummel
    Climate Dynamics, 2002, 19 : 397 - 415
  • [39] SPECTRA OF TURBULENT MOMENTUM FLUXES IN ATMOSPHERIC BOUNDARY-LAYER
    KUKHARETS, VP
    IZVESTIYA AKADEMII NAUK SSSR FIZIKA ATMOSFERY I OKEANA, 1976, 12 (02): : 200 - 204
  • [40] Momentum fluxes estimation within the Marine Atmospheric Boundary Layer
    Helmis, Costas G.
    REMOTE'09: PROCEEDINGS OF THE 5TH WSEAS INTERNATIONAL CONFERENCE ON REMOTE SENSING, 2009, : 62 - 66