Research on social recommender systems

被引:0
|
作者
Meng, Xiang-Wu [1 ,2 ]
Liu, Shu-Dong [1 ,2 ]
Zhang, Yu-Jie [1 ,2 ]
Hu, Xun [1 ,2 ]
机构
[1] Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunication, Beijing,100876, China
[2] School of the Computer Science, Beijing University of Posts and Telecommunication, Beijing,100876, China
来源
Ruan Jian Xue Bao/Journal of Software | 2015年 / 26卷 / 06期
关键词
Collaborative filtering - Inference engines - Factorization;
D O I
10.13328/j.cnki.jos.004831
中图分类号
学科分类号
摘要
Social recommender systems have recently become one of the hottest topics in the domain of recommender systems. The main task of social recommender system is to alleviate data sparsity and cold-start problems, and improve its performance utilizing users' social attributes. This paper presents an overview of the field of social recommender systems, including trust inference algorithms, key techniques and typical applications. The prospects for future development and suggestions for possible extensions are also discussed. ©2015 ISCAS.
引用
收藏
页码:1356 / 1372
相关论文
共 50 条
  • [31] SocialFan: Integrating Social Networks into Recommender Systems
    Diaz-Agudo, Belen
    Jimenez-Diaz, Guillermo
    Recio-Garcia, Juan A.
    2018 IEEE 30TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2018, : 171 - 176
  • [32] Introduction to the Special Section on Social Recommender Systems
    Guy, Ido
    Chen, Li
    Zhou, Michelle X.
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2013, 4 (01)
  • [33] A Reusable Methodology for the Instantiation of Social Recommender Systems
    Quijano-Sanchez, Lara
    Recio-Garcia, Juan A.
    Diaz-Agudo, Belen
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2014, 23 (06)
  • [34] Context Incorporation Techniques for Social Recommender Systems
    Al Jawarneh, Isam Mashhour
    Bellavista, Paolo
    Corradi, Antonio
    Foschini, Luca
    Montanari, Rebecca
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [35] The Influence of Social Stratification on Trust in Recommender Systems
    Rad, Dana
    Cuc, Lavinia Denisia
    Feher, Andrea
    Joldes, Cosmin Silviu Raul
    Batca-Dumitru, Graziella Corina
    Sendroiu, Cleopatra
    Almasi, Robert Cristian
    Chis, Sabin
    Popescu, Miron Gavril
    ELECTRONICS, 2023, 12 (10)
  • [36] Recommender systems in social and online learning environments
    Tang, Tiffany Ya
    Daniel, Ben K.
    Romero, Cristobal
    EXPERT SYSTEMS, 2015, 32 (02) : 261 - 263
  • [37] Consumer acceptance of social recommender systems in India
    Virdi, Preeti
    Kalro, Arti D.
    Sharma, Dinesh
    ONLINE INFORMATION REVIEW, 2020, 44 (03) : 723 - 744
  • [38] Advanced Recommender Systems by Exploiting Social Networks
    Ge, Mouzhi
    Persia, Fabio
    D'Auria, Daniela
    2019 IEEE INTERNATIONAL CONFERENCE ON HUMANIZED COMPUTING AND COMMUNICATION (HCC 2019), 2019, : 118 - 125
  • [39] A Temporal Clustering Approach for Social Recommender Systems
    Ahmadian, Sajad
    Joorabloo, Nima
    Jalili, Mahdi
    Meghdadi, Majid
    Afsharchi, Mohsen
    Ren, Yongli
    2018 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2018, : 1139 - 1144
  • [40] Enhancing recommender systems by incorporating social information
    Huang, Li-wei
    Chen, Gui-sheng
    Liu, Yu-chao
    Li, De-yi
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS, 2013, 14 (09): : 711 - 721