A Novel ConvLSTM-Based U-net for Improved Brain Tumor Segmentation

被引:1
|
作者
Almiahi, Osama Majeed Hilal [1 ]
Albu-Salih, Alaa Taima [1 ]
Alhajim, Dhafer [2 ]
机构
[1] Univ Al Qadisiyah, Coll Comp Sci & Informat Technol, Al Diwaniyah 58002, Iraq
[2] Univ Al Qadisiyah, Comp Ctr, Al Diwaniyah 58002, Iraq
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Brain tumor; deep learning; ConvLSTM; up skip connection; U-net; CLASSIFICATION; NETWORKS;
D O I
10.1109/ACCESS.2024.3483562
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Using 2D scans or simple 3D convolutions are two limitations of previous works on segmentation of brain tumors by deep learning, which lead to ignoring the temporal distribution of the scans. This study proposes a novel extension to the well-known U-net model for brain tumor segmentation, utilizing 3D Magnetic Resonance Imaging (MRI) volumes as inputs. The method, called ConvLSTM-based U-net + up skip connections, incorporates the ConvLSTM blocks to capture spatio-temporal dependencies in the 3D MRI volumes, and up skip connections to capture low-level feature maps extracted from the encoding path, enhancing the information flow through the network to the standard U-net architecture. A novel intensity normalization technique is used to improve the comparability of scans. This technique normalizes image intensity by subtracting the grey-value of the most frequent bin from the image. The novel method is tested on the Multimodal Brain Tumor Segmentation (BRATS) 2015 dataset, showing that the use of ConvLSTM blocks improved segmentation quality by 1.6% on the test subset. The addition of skip connections further improved performance by 3.3% and 1.7% relative to the U-net and ConvLSTM-based U-net models, respectively. Moreover, the inclusion of up skip connections could enhance the performance by 5.7%, 3.99% and 2.2% relative to the simple U-net, ConvLSTM-based U-net, and ConvLSTM-based U-net with skip connections, respectively. Finally, the novel preprocessing technique had a positive effect on the proposed network, resulting in a 3.3% increase in the segmentation outcomes.
引用
收藏
页码:157346 / 157358
页数:13
相关论文
共 50 条
  • [21] Segmenting Brain Tumor with an Improved U-Net Architecture
    Tan, Der Sheng
    Tam, Wei Qiang
    Nisar, Humaira
    Yeap, Kim Ho
    2022 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES, IECBES, 2022, : 72 - 77
  • [22] Automatic Detection and Segmentation of Brain Hemorrhage based on Improved U-Net Model
    Phan, Thuong-Cang
    Phan, Anh-Cang
    CURRENT MEDICAL IMAGING, 2024, 20
  • [23] A Robust Segmentation Method Based on Improved U-Net
    Sha, Gang
    Wu, Junsheng
    Yu, Bin
    NEURAL PROCESSING LETTERS, 2021, 53 (04) : 2947 - 2965
  • [24] Brain Tumor Segmentation Based on 3D Residual U-Net
    Bhalerao, Megh
    Thakur, Siddhesh
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 218 - 225
  • [25] Segmentation of Intracerebral Hemorrhage based on Improved U-Net
    Cao Guogang
    Wang Yijie
    Zhu Xinyu
    Li Mengxue
    Wang Xiaoyan
    Chen Ying
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2021, 65 (03)
  • [26] Study on strategy of CT image sequence segmentation for liver and tumor based on U-Net and Bi-ConvLSTM
    Li, Jing
    Ou, Xue
    Shen, Nanyan
    Sun, Jie
    Ding, Junli
    Zhang, Jiawen
    Yao, Jia
    Wang, Ziyan
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 180
  • [27] Fringe Segmentation Algorithm Based on Improved U-Net
    Yan Wenwei
    Chen Shuai
    Mu Baoyan
    Gao Liang
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (12)
  • [28] Stone segmentation based on improved U-Net network
    Chen, Ning
    Ma, Xinkai
    Luo, Haixia
    Peng, Jun
    Jin, Shangzhu
    Wu, Xiao
    Zhou, Yongsheng
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 895 - 908
  • [29] Magnetic Resonance Brain Tumor Image Segmentation Based on Attention U-Net
    Ai Lingmei
    Li Tiandong
    Liao Fuyuan
    Shi Kangzhen
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (14)
  • [30] Joint Learning of Segmentation and Overall Survival for Brain Tumor based on U-Net
    Kwon, Junmo
    Park, Hyunjin
    2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS, 2023, : 925 - 926