Hydrophobic carbon quantum dots with Lewis-Basic nitrogen sites for electrocatalyst CO2 reduction to CH4

被引:8
|
作者
Fu, Shuai [1 ]
Tang, Bijun [2 ]
Wang, Zeming [1 ]
An, Guangbin [1 ]
Zhang, Mingwan [1 ]
Wang, Kang [1 ]
Liu, Wenhui [1 ]
Guo, Huazhang [1 ]
Zhang, Baohua [3 ]
Wang, Liang [1 ,4 ]
机构
[1] Shanghai Univ, Inst Nanochem & Nanobiol, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
[2] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[3] Shanghai Univ, Sch Environm & Chem Engn, Dept Chem Engn, Shanghai 200444, Peoples R China
[4] Shanghai Univ, Shanghai Engn Res Ctr Organ Repair, Joint Int Res Lab Biomat & Biotechnol Organ Repair, Minist Educ, Shanghai 200444, Peoples R China
关键词
Carbon dioxide reduction; Lewis basic sites; Hydrophobic; Carbon quantum dots; Methane; ELECTROREDUCTION;
D O I
10.1016/j.cej.2024.157207
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Metal-free carbon-based catalysts offered a promising alternative for efficient electrochemical carbon dioxide reduction (ECO2RR), presenting potential advantages over transition metal-based counterparts. However, challenges such as low Faraday efficiencies and limited current densities persist. Herein, we synthesized CQDs with high Lewis basic sites to enhance CO2 adsorption and activation, resulting in an optimized CQD-2 catalyst that achieved a Faradaic efficiency of 52.00 % and a current density of 178 mA cm-2 for CH4 production. In situ characterizations unveiled that CO2 was activated into *COOH intermediates, which further converted to *CO species. Concurrently, activated H2O molecule ionized into protons, facilitating reaction kinetics. This research provides valuable insights into designing carbon-based catalysts with high Lewis base content, offering significant prospects for advancing high-performance ECO2RR technologies.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] New insights into the dissociation of mixed CH4/CO2 hydrates for CH4 production and CO2 storage
    Pandey, Jyoti Shanker
    Ouyang, Qian
    von Solms, Nicolas
    CHEMICAL ENGINEERING JOURNAL, 2022, 427
  • [42] Titania-Modified Silver Electrocatalyst for Selective CO2 Reduction to CH3OH and CH4 from DFT Study
    Zhai, Lina
    Cui, Chaonan
    Zhao, Yuntao
    Zhu, Xinli
    Han, Jinyu
    Wang, Hua
    Ge, Qingfeng
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (30): : 16275 - 16282
  • [43] Integrating carbon quantum dots with oxygen vacancy modified nickel-based metal organic frameworks for photocatalytic CO2 reduction to CH4 with approximately 100 % selectivity
    Wang, Ziqiong
    Wang, Yan
    Li, Wanting
    Liu, Siyu
    Zhang, Ling
    Yang, Jiani
    Feng, Caixia
    Chong, Ruifeng
    Zhou, Yanmei
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 678 : 689 - 702
  • [44] Borophene: A Metal-free and Metallic Electrocatalyst for Efficient Converting CO2 into CH4
    Qin, Gangqiang
    Cui, Qianyi
    Du, Aijun
    Sun, Qiao
    CHEMCATCHEM, 2020, 12 (05) : 1483 - 1490
  • [45] CO2/CH4 Separation by Adsorption
    不详
    ENERGY TECHNOLOGY, 2013, 1 (08) : 434 - 434
  • [46] A photocatalyst for reducing CO2 to CH4
    Chemical Engineering (United States), 2018, 125 (01):
  • [47] Adsorption of CH4 and CH4/CO2 mixtures in carbon nanotubes and disordered carbons: A molecular simulation study
    Liu, Lang
    Nicholson, David
    Bhatia, Suresh K.
    CHEMICAL ENGINEERING SCIENCE, 2015, 121 : 268 - 278
  • [48] Frustrated Lewis Pair Sites Boosting CO2 Photoreduction on Cs2CuBr4 Perovskite Quantum Dots
    Sheng, Jianping
    He, Ye
    Huang, Ming
    Yuan, Chaowei
    Wang, Shengyao
    Dong, Fan
    ACS CATALYSIS, 2022, 12 (05) : 2915 - 2926
  • [49] CO2/CH4 feed for DME
    不详
    EUROPEAN CHEMICAL NEWS, 1996, 65 (1718): : 22 - 22
  • [50] PHOTOCATALYZED CONVERSION OF CO2 TO CH4
    XU, SP
    GAFNEY, HD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1994, 207 : 24 - INOR