Hydrophobic carbon quantum dots with Lewis-Basic nitrogen sites for electrocatalyst CO2 reduction to CH4

被引:8
|
作者
Fu, Shuai [1 ]
Tang, Bijun [2 ]
Wang, Zeming [1 ]
An, Guangbin [1 ]
Zhang, Mingwan [1 ]
Wang, Kang [1 ]
Liu, Wenhui [1 ]
Guo, Huazhang [1 ]
Zhang, Baohua [3 ]
Wang, Liang [1 ,4 ]
机构
[1] Shanghai Univ, Inst Nanochem & Nanobiol, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
[2] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[3] Shanghai Univ, Sch Environm & Chem Engn, Dept Chem Engn, Shanghai 200444, Peoples R China
[4] Shanghai Univ, Shanghai Engn Res Ctr Organ Repair, Joint Int Res Lab Biomat & Biotechnol Organ Repair, Minist Educ, Shanghai 200444, Peoples R China
关键词
Carbon dioxide reduction; Lewis basic sites; Hydrophobic; Carbon quantum dots; Methane; ELECTROREDUCTION;
D O I
10.1016/j.cej.2024.157207
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Metal-free carbon-based catalysts offered a promising alternative for efficient electrochemical carbon dioxide reduction (ECO2RR), presenting potential advantages over transition metal-based counterparts. However, challenges such as low Faraday efficiencies and limited current densities persist. Herein, we synthesized CQDs with high Lewis basic sites to enhance CO2 adsorption and activation, resulting in an optimized CQD-2 catalyst that achieved a Faradaic efficiency of 52.00 % and a current density of 178 mA cm-2 for CH4 production. In situ characterizations unveiled that CO2 was activated into *COOH intermediates, which further converted to *CO species. Concurrently, activated H2O molecule ionized into protons, facilitating reaction kinetics. This research provides valuable insights into designing carbon-based catalysts with high Lewis base content, offering significant prospects for advancing high-performance ECO2RR technologies.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Lewis-Basic EDTA as a Highly Active Molecular Electrocatalyst for CO2 Reduction to CH4
    Huang, Minxue
    Gong, Shipeng
    Wang, Changlai
    Yang, Yang
    Jiang, Peng
    Wang, Pengcheng
    Hu, Lin
    Chen, Qianwang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (42) : 23002 - 23009
  • [2] Photodriven reduction of CO2 to CH4
    Fang, Baizeng
    Xing, Yalan
    Bonakdarpour, Arman
    Zhang, Shichao
    Wilkinson, David P.
    ACS Sustainable Chemistry and Engineering, 2015, 3 (10): : 2381 - 2388
  • [3] Merging open metal sites and Lewis basic sites in a NbO-type metal-organic framework for improved C2H2/CH4 and CO2/CH4 separation
    Song, Chengling
    Hu, Jiayi
    Ling, Yajing
    Feng, Yunlong
    Chen, De-Li
    He, Yabing
    DALTON TRANSACTIONS, 2015, 44 (33) : 14823 - 14829
  • [4] A microporous metal-organic framework with Lewis basic pyridyl sites for selective gas separation of C2H2/CH4 and CO2/CH4 at room temperature
    Chen, Guohui
    Zhang, Zhangjing
    Xiang, Shengchang
    Chen, Banglin
    CRYSTENGCOMM, 2013, 15 (26): : 5232 - 5235
  • [5] Phase Equilibrium Studies of Tetrahydrofuran (THF) + CH4, THF + CO2, CH4 + CO2, and THF + CO2 + CH4 Hydrates
    Lee, Yun-Je
    Kawamura, Taro
    Yamamoto, Yoshitaka
    Yoon, Ji-Ho
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2012, 57 (12): : 3543 - 3548
  • [6] Highly Selective Electrochemical Reduction of CO2 to CH4 over Vacancy Metal Nitrogen Sites in an Artificial Photosynthetic Cell
    Xuan, Xiaoxu
    Cheng, Jun
    Yang, Xiao
    Zhou, Junhu
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (03) : 1679 - 1686
  • [7] Cu single-atom electrocatalyst on nitrogen-containing graphdiyne for CO2 electroreduction to CH4
    Dai, Hao
    Song, Tao
    Yue, Xian
    Wei, Shuting
    Li, Fuzhi
    Xu, Yanchao
    Shu, Siyan
    Cui, Ziang
    Wang, Cheng
    Gu, Jun
    Duan, Lele
    CHINESE JOURNAL OF CATALYSIS, 2024, 64 : 123 - 132
  • [8] Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4
    Qian Li
    Songcan Wang
    Zhuxing Sun
    Qijun Tang
    Yiqiu Liu
    Lianzhou Wang
    Haiqiang Wang
    Zhongbiao Wu
    Nano Research, 2019, 12 : 2749 - 2759
  • [9] Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4
    Li, Qian
    Wang, Songcan
    Sun, Zhuxing
    Tang, Qijun
    Liu, Yiqiu
    Wang, Lianzhou
    Wang, Haiqiang
    Wu, Zhongbiao
    NANO RESEARCH, 2019, 12 (11) : 2749 - 2759
  • [10] Metal-free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO2 to CO and CH4
    Li, Wanlu
    Seredych, Mykola
    Rodriguez-Castellon, Enrique
    Bandosz, Teresa J.
    CHEMSUSCHEM, 2016, 9 (06) : 606 - 616