On connes amenability of upper triangular matrix algebras

被引:0
|
作者
Shariati, S.F. [1 ]
Pourabbas, A. [1 ]
Sahami, A. [2 ]
机构
[1] Faculty of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, Tehran,15914, Iran
[2] Department of Mathematics, Faculty of Basic Sciences, Ilam University, P.O. Box 69315-516, Ilam, Iran
关键词
Set theory - Banach spaces;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the notion of Connes amenability for a class of I × I-upper triangular matrix algebra UP(I,A), where A is a dual Banach algebra with a non-zero wk∗-continuous character and I is a totally ordered set. For this purpose, we characterize the φ-Connes amenability of a dual Banach algebra A through the existence of a specified net in A⊗A, where φ is a non-zero wk∗-continuous character. Using this, we show that UP(I,A) is Connes amenable if and only if I is singleton and A is Connes amenable. In addition, some examples of φ-Connes amenable dual Banach algebras, which is not Connes amenable are given. © 2018 Politechnica University of Bucharest. All rights reserved.
引用
收藏
页码:145 / 152
相关论文
共 50 条
  • [21] Character Connes-amenability of dual Banach algebras
    Behrouz Shojaee
    Massoud Amini
    Periodica Mathematica Hungarica, 2017, 74 : 31 - 39
  • [22] IDEAL CONNES-AMENABILITY OF LAU PRODUCT OF BANACH ALGEBRAS
    Minapoor, A.
    Bodaghi, A.
    Mewomo, O. T.
    EURASIAN MATHEMATICAL JOURNAL, 2021, 12 (04): : 74 - 81
  • [23] Johnson Pseudo-Connes Amenability of Dual Banach Algebras
    Sahami, Amir
    Shariati, Seyedeh Fatemeh
    Pourabbas, Abdolrasoul
    FILOMAT, 2021, 35 (02) : 551 - 559
  • [24] Weak amenability of triangular Banach algebras
    Forrest, BE
    Marcoux, LW
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (04) : 1435 - 1452
  • [25] Ideal Connes-Amenability of Certain Dual Banach Algebras
    Minapoor, Ahmad
    Zivari-Kazempour, Abbas
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2023, 17 (02)
  • [26] STRONG PSEUDO-CONNES AMENABILITY OF CERTAIN BANACH ALGEBRAS
    Sahami, A.
    Shariati, S. F.
    Pourabbas, A.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2020, 82 (03): : 25 - 32
  • [27] On approximate Connes-amenability of enveloping dual Banach algebras
    Shirinkalam, Ahmad
    Pourabbas, Abdolrasoul
    NEW YORK JOURNAL OF MATHEMATICS, 2017, 23 : 699 - 709
  • [28] Strong pseudo-connes amenability of certain banach algebras
    Sahami, A.
    Shariati, S.F.
    Pourabbas, A.
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2020, 82 (03): : 25 - 32
  • [29] Superinvolutions on upper-triangular matrix algebras
    Ioppolo, Antonio
    Martino, Fabrizio
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (08) : 2022 - 2039
  • [30] Polynomial functions on upper triangular matrix algebras
    Sophie Frisch
    Monatshefte für Mathematik, 2017, 184 : 201 - 215