On connes amenability of upper triangular matrix algebras

被引:0
|
作者
Shariati, S.F. [1 ]
Pourabbas, A. [1 ]
Sahami, A. [2 ]
机构
[1] Faculty of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, Tehran,15914, Iran
[2] Department of Mathematics, Faculty of Basic Sciences, Ilam University, P.O. Box 69315-516, Ilam, Iran
关键词
Set theory - Banach spaces;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the notion of Connes amenability for a class of I × I-upper triangular matrix algebra UP(I,A), where A is a dual Banach algebra with a non-zero wk∗-continuous character and I is a totally ordered set. For this purpose, we characterize the φ-Connes amenability of a dual Banach algebra A through the existence of a specified net in A⊗A, where φ is a non-zero wk∗-continuous character. Using this, we show that UP(I,A) is Connes amenable if and only if I is singleton and A is Connes amenable. In addition, some examples of φ-Connes amenable dual Banach algebras, which is not Connes amenable are given. © 2018 Politechnica University of Bucharest. All rights reserved.
引用
收藏
页码:145 / 152
相关论文
共 50 条
  • [1] ON CONNES AMENABILITY OF UPPER TRIANGULAR MATRIX ALGEBRAS
    Shariati, S. F.
    Pourabbas, A.
    Sahami, A.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (02): : 145 - 152
  • [2] BEURLING AND MATRIX ALGEBRAS, (APROXIMATE) CONNES-AMENABILITY
    Mahmoodi, Amin
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (01): : 157 - 170
  • [3] σ-Connes Amenability and Pseudo-(Connes) Amenability of Beurling Algebras
    Hasanzadeh, Zahra
    Mahmoodi, Amin
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2019, 15 (01): : 77 - 89
  • [4] APPROXIMATE IDEAL CONNES AMENABILITY OF DUAL BANACH ALGEBRAS AND IDEAL CONNES AMENABILITY OF DISCRETE BEURLING ALGEBRAS
    Minapoor, A.
    EURASIAN MATHEMATICAL JOURNAL, 2020, 11 (02): : 72 - 85
  • [5] φ-CONNES AMENABILITY OF DUAL BANACH ALGEBRAS
    Ghaffari, A.
    Javadi, S.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (01): : 25 - 39
  • [6] Character Connes amenability of dual Banach algebras
    Mohammad Ramezanpour
    Czechoslovak Mathematical Journal, 2018, 68 : 243 - 255
  • [7] A SURVEY ON χ-MODULE CONNES AMENABILITY OF SEMIGROUP ALGEBRAS
    Tamimi, E.
    Ghaffari, A.
    JOURNAL OF ALGEBRAIC SYSTEMS, 2025, 13 (01):
  • [8] Connes-amenability of Fourier Stieltjes algebras
    Runde, Volker
    Uygul, Faruk
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2015, 47 : 555 - 564
  • [9] Connes-amenability of multiplier Banach algebras
    Hayati, Bahman
    Amini, Massoud
    KYOTO JOURNAL OF MATHEMATICS, 2010, 50 (01) : 41 - 50
  • [10] Module Connes amenability of hypergroup measure algebras
    Amini, Massoud
    OPEN MATHEMATICS, 2015, 13 : 737 - 756