Numerical simulation for Navier-Stokes equations by projection/Characteristic-based operator-splitting finite element method

被引:0
|
作者
Shui, Qingxiang [1 ]
Wang, Daguo [1 ]
机构
[1] School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
关键词
Galerkin methods - Vortex flow - Incompressible flow - Circular cylinders - Navier Stokes equations - Numerical methods;
D O I
10.6052/0459-1879-13-253
中图分类号
学科分类号
摘要
引用
收藏
页码:369 / 381
相关论文
共 50 条
  • [41] Numerical simulation of self-sustained oscillation of a voice-producing element based on Navier-Stokes equations and the finite element method
    de Vries, MP
    Hamburg, MC
    Schutte, HK
    Verkerke, GJ
    Veldman, AEP
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2003, 113 (04): : 2077 - 2083
  • [42] MIXED FINITE-ELEMENT METHOD FOR THE NAVIER-STOKES EQUATIONS
    JOHNSON, C
    RAIRO-ANALYSE NUMERIQUE-NUMERICAL ANALYSIS, 1978, 12 (04): : 335 - 348
  • [43] A Weak Galerkin Finite Element Method for the Navier-Stokes Equations
    Zhang, Jiachuan
    Zhang, Kai
    Li, Jingzhi
    Wang, Xiaoshen
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 23 (03) : 706 - 746
  • [44] A weak Galerkin finite element method for the Navier-Stokes equations
    Liu, Xin
    Li, Jian
    Chen, Zhangxin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 333 : 442 - 457
  • [45] A multiscale finite element method for the incompressible Navier-Stokes equations
    Masud, A
    Khurram, RA
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (13-16) : 1750 - 1777
  • [46] A postprocessing mixed finite element method for the Navier-Stokes equations
    Liu, Qingfang
    Hou, Yanren
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2009, 23 (06) : 461 - 475
  • [47] Numerical solution of the stationary Navier-Stokes equations using a multilevel finite element method
    Layton, W
    Lee, HK
    Peterson, J
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01): : 1 - 12
  • [48] A finite element variational multiscale method for the Navier-Stokes equations
    John, V
    Kaya, S
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (05): : 1485 - 1503
  • [49] A weak Galerkin finite element method for the Navier-Stokes equations
    Hu, Xiaozhe
    Mu, Lin
    Ye, Xiu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 362 : 614 - 625
  • [50] A fully parallel mortar finite element projection method for the solution of the unsteady Navier-Stokes equations
    BenAbdallah, A
    Guermond, JL
    COMPUTATIONAL FLUID DYNAMICS '96, 1996, : 852 - 858