Strain Amplification Strategy for the Regulation of 2D and 3D Optical Micro/Nanostructures

被引:0
|
作者
Zou, Qiushun [1 ,2 ]
Li, Bo [1 ,2 ]
Guo, Ruansheng [1 ,2 ]
Chen, Yimin [2 ]
Gu, Chenjie [2 ]
Zhang, Peiqing [2 ]
Shen, Xiang [1 ,2 ,3 ]
机构
[1] Ningbo Univ, Fac Elect Engn & Comp Sci, Ningbo 315211, Peoples R China
[2] Ningbo Univ, Adv Technol Res Inst, Lab Infrared Mat & Devices, Zhejiang Key Lab Adv Opt Funct Mat & Devices, Zhejiang 315211, Peoples R China
[3] Ningbo Inst Oceanog, Ningbo 315832, Peoples R China
基金
中国国家自然科学基金;
关键词
strain amplification; 3D optical micro/nanostructures; dynamic regulation; plasmonic resonances; activeoptical devices; METASURFACES; ORIGAMI;
D O I
10.1021/acsanm.4c04748
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Three-dimensional (3D) nanostructures have attracted significant attention due to their excellent properties in electromagnetic field localization and regulation, which are hardly obtained from the planar nanostructure. Recently, a promising approach, internal or external triggers induced by 2D precursor to 3D nanostructure transformation, has emerged to provide a solid basis for studying and applying 3D micro/nanostructures. However, the function and research of the constraint blocks in 2D precursors are still superficial, which restricts its development. Here, we have theoretically proposed and experimentally demonstrated a strain amplification strategy for dynamically regulating 2D and 3D optical micro/nanostructures. Arising from the restriction of the paired constraint blocks, the strain between the blocks is significantly increased to obtain a strain amplification effect, which can be simulated by a finite element method (FEM), and verified experimentally from the gap change between the 2D gratings. Meanwhile, such a strategy can regulate the 3D optical micro/nanostructures, such as the nanopyramids studied here. The results indicate that the strain increment depends on the design of the paired blocks, especially their length. Moreover, the reflection properties of a nanorod dimer array were dynamically regulated by a combination of prestretching. The proposed strain amplification strategy provides opportunities to regulate the 2D and 3D nanostructures for active optical components, flexible electronics, and integrated circuits.
引用
收藏
页码:24905 / 24913
页数:9
相关论文
共 50 条
  • [41] 3D printing methods for micro- and nanostructures
    Fritzler, K. B.
    Prinz, V. Ya
    PHYSICS-USPEKHI, 2019, 62 (01) : 54 - 69
  • [42] A microfluidic device for 2D to 3D and 3D to 3D cell navigation
    Shamloo, Amir
    Amirifar, Leyla
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2016, 26 (01)
  • [43] 3D optical micro-resonators by curving nanostructures using intrinsic stress
    Sieutat, C.
    Chevalier, C.
    Danescu, A.
    Grenet, G.
    Regreny, P.
    Viktorovitch, P.
    Letartre, X.
    Leclercq, J. L.
    PHOTONIC CRYSTAL MATERIALS AND DEVICES X, 2012, 8425
  • [44] Optical lattice transformation from 2D to 3D by holographic interference
    王霞
    李海博
    王自霞
    OptoelectronicsLetters, 2009, 5 (06) : 434 - 436
  • [45] Orientation Control of 2D Perovskite in 2D/3D Heterostructure by Templated Growth on 3D Perovskite
    Uzurano, Genya
    Kuwahara, Nao
    Saito, Tomoki
    Fujii, Akihiko
    Ozaki, Masanori
    ACS MATERIALS LETTERS, 2022, 4 (02): : 378 - 384
  • [46] Optical lattice transformation from 2D to 3D by holographic interference
    Wang X.
    Li H.-B.
    Wang Z.-X.
    Optoelectronics Letters, 2009, 5 (6) : 434 - 436
  • [47] Design in 2D, model in 3D: Live 3D pose generation from 2D sketches
    Tosco, Paolo
    Mackey, Mark
    Cheeseright, Tim
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [49] Innovations in perovskite solar cells: a journey through 2D, 3D, and 2D/3D heterojunctions
    Sehar, Anum
    Nasir, Fariha
    Farhan, Ahmad
    Akram, Samiullah
    Qayyum, Wajeeha
    Zafar, Kainat
    Ali, Syed Kashif
    Qamar, Muhammad Azam
    REVIEWS IN INORGANIC CHEMISTRY, 2024,
  • [50] Engineering cell morphology using maskless 2D protein micropatterning on 3D nanostructures
    Sarikhani, Einollah
    Klausen, Lasse
    Meganathan, Dhivya Pushpa
    Serrano, Abel Marquez
    Tsai, Ching-Ting
    Cui, Bianxiao
    Jahed, Zeinab
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 553A - 553A