Sharp global well-posedness for the fractional BBM equation

被引:0
|
作者
Wang, Ming [1 ]
Zhang, Zaiyun [1 ]
机构
[1] School of Mathematics, Hunan Institute of Science and Technology, Yueyang,414006, China
来源
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:5906 / 5918
相关论文
共 50 条
  • [41] Global well-posedness for the Benjamin equation in low regularity
    Li, Yongsheng
    Wu, Yifei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (06) : 1610 - 1625
  • [42] GLOBAL WELL-POSEDNESS ON THE DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Wu, Yifei
    ANALYSIS & PDE, 2015, 8 (05): : 1101 - 1112
  • [43] Global Well-Posedness and Scattering for Derivative Schrodinger Equation
    Wang, Yuzhao
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (10) : 1694 - 1722
  • [44] Global well-posedness for the KP-I equation
    Molinet, L
    Saut, JC
    Tzvetkov, N
    MATHEMATISCHE ANNALEN, 2002, 324 (02) : 255 - 275
  • [45] On global well-posedness for defocusing cubic wave equation
    Bahouri, Hajer
    Chemin, Jean-Yves
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2006, 2006
  • [46] Global Well-Posedness of the Kirchhoff Equation and Kirchhoff Systems
    Matsuyama, Tokio
    Ruzhansky, Michael
    ANALYTIC METHODS IN INTERDISCIPLINARY APPLICATIONS, 2015, 116 : 81 - 96
  • [47] Global well-posedness for the derivative nonlinear Schrodinger equation
    Bahouri, Hajer
    Perelman, Galina
    INVENTIONES MATHEMATICAE, 2022, 229 (02) : 639 - 688
  • [48] On the sharp local well-posedness for the modified Ostrovsky, Stepanyams and Tsimring equation
    Esfahani, Amin
    Wang, Hongwei
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 60
  • [49] Local well-posedness for a fractional KdV-type equation
    Roger P. de Moura
    Ailton C. Nascimento
    Gleison N. Santos
    Journal of Evolution Equations, 2022, 22
  • [50] Sharp well-posedness of the biharmonic Schrödinger equation in a quarter plane
    Compaan, E.
    Tzirakis, N.
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 4 (06):