Bio-inspired innovations in 3D concrete printing: structures, materials and applications

被引:2
|
作者
Du, Guoqiang [1 ]
Qian, Ye [1 ]
机构
[1] Univ Hong Kong, Dept Civil Engn, Pokfulam Rd, Hong Kong, Peoples R China
关键词
3D concrete printing; Bio-inspired; Hierarchical structures; Porous structures; Building components; Biomaterial-based materials; MECHANICAL-PROPERTIES; CELLULAR STRUCTURES; ENERGY-ABSORPTION; BIOMIMETIC DESIGN; FIBER; BONE; PERFORMANCE; COMPOSITES; EXTRUSION; NACRE;
D O I
10.1016/j.apmt.2024.102459
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Many biological structures in nature inspire artificial materials due to their superior performance, yet their complexity often surpasses traditional manufacturing methods. The emergence of 3D concrete printing (3DCP) technology has driven innovation in the construction industry, offering flexible, efficient, sustainable, and costeffective solutions. The automation and design flexibility of 3DCP are ideal for creating bio-inspired structures. This study reviews current bio-inspired approaches in 3DCP, including hierarchical arrangements, porous structures, building components, and biomaterial-based printable concrete. Bio-inspired hierarchical structures enhance strength and toughness, porous structures mimic honeycombs or bones to improve lightweight and thermal insulation, and building components emulate plant and animal forms for high performance and aesthetics. Biomaterial-based concrete incorporates natural or bio-inspired materials for sustainability. This paper also examines the challenges and prospects of bio-inspired 3DCP, highlighting ongoing research directions in advanced materials, printing technologies, and optimized design methods to overcome current limitations and expand practical applications.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Bio-inspired 3D printing approach for bonding soft and rigid materials through underextrusion
    Goshtasbi, Arman
    Grignaffini, Luca
    Sadeghi, Ali
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [2] Design optimization of bio-inspired 3D printing by machine learning
    Goto, Daiki
    Matsuzaki, Ryosuke
    Todoroki, Akira
    ADVANCED COMPOSITE MATERIALS, 2024,
  • [3] A Review on Development of Bio-Inspired Implants Using 3D Printing
    Raheem, Ansheed A.
    Hameed, Pearlin
    Whenish, Ruban
    Elsen, Renold S.
    Aswin, G.
    Jaiswal, Amit Kumar
    Prashanth, Konda Gokuldoss
    Manivasagam, Geetha
    BIOMIMETICS, 2021, 6 (04)
  • [4] 3D magnetic printing of bio-inspired composites with tunable mechanical properties
    Luquan Ren
    Xueli Zhou
    Qingping Liu
    Yunhong Liang
    Zhengyi Song
    Baoyu Zhang
    Bingqian Li
    Journal of Materials Science, 2018, 53 : 14274 - 14286
  • [5] Rapid printing of bio-inspired 3D tissue constructs for skin regeneration
    Zhou, Feifei
    Hong, Yi
    Liang, Renjie
    Zhang, Xianzhu
    Liao, Youguo
    Jiang, Deming
    Zhang, Jiayan
    Sheng, Zixuan
    Xie, Chang
    Peng, Zhi
    Zhuang, Xinhao
    Bunpetch, Varitsara
    Zou, Yiwei
    Huang, Wenwen
    Zhang, Qin
    Alakpa, Enateri Vera
    Zhang, Shufang
    Ouyang, Hongwei
    BIOMATERIALS, 2020, 258
  • [6] 3D magnetic printing of bio-inspired composites with tunable mechanical properties
    Ren, Luquan
    Zhou, Xueli
    Liu, Qingping
    Liang, Yunhong
    Song, Zhengyi
    Zhang, Baoyu
    Li, Bingqian
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (20) : 14274 - 14286
  • [7] Materials and technical innovations in 3D printing in biomedical applications
    Tetsuka, Hiroyuki
    Shin, Su Ryon
    JOURNAL OF MATERIALS CHEMISTRY B, 2020, 8 (15) : 2930 - 2950
  • [8] Dynamic Response of 3D Printed Bio-Inspired Lightweight Structures
    Siddique, Shakib Hyder
    Hazell, Paul J.
    Pereira, Gerald G.
    Wang, Hongxu
    Escobedo, Juan P.
    DYNAMIC RESPONSE AND FAILURE OF COMPOSITE MATERIALS, DRAF 2024, 2025, : 312 - 322
  • [9] Compression Behaviour of Bio-Inspired Honeycomb Reinforced Starfish Shape Structures Using 3D Printing Technology
    Saufi, S. A. S. A.
    Zuhri, M. Y. M.
    Dezaki, M. Lalegani
    Sapuan, S. M.
    Ilyas, R. A.
    As'arry, A.
    Ariffin, M. K. A.
    Bodaghi, M.
    POLYMERS, 2021, 13 (24)
  • [10] Bio-Inspired Toughening of Composites in 3D-Printing
    Stoegerer, Johannes
    Baumgartner, Sonja
    Hochwallner, Alexander
    Stampfl, Juergen
    MATERIALS, 2020, 13 (21) : 1 - 16