Materials and technical innovations in 3D printing in biomedical applications

被引:124
|
作者
Tetsuka, Hiroyuki [1 ,2 ]
Shin, Su Ryon [1 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Div Engn Med, Dept Med, 65 Lansdowne St, Cambridge, MA 02139 USA
[2] Toyota Motor North Amer, Toyota Res Inst North Amer, Future Res Dept, 1555 Woodridge Ave, Ann Arbor, MI 48105 USA
基金
美国国家卫生研究院;
关键词
MESENCHYMAL STROMAL CELLS; TISSUE CONSTRUCTS; CARTILAGE TISSUE; CROSS-LINKING; DIRECT-WRITE; TEXTURE CONTROL; SOFT MATTER; IN-VITRO; HYDROGELS; LADEN;
D O I
10.1039/d0tb00034e
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
3D printing is a rapidly growing research area, which significantly contributes to major innovations in various fields of engineering, science, and medicine. Although the scientific advancement of 3D printing technologies has enabled the development of complex geometries, there is still an increasing demand for innovative 3D printing techniques and materials to address the challenges in building speed and accuracy, surface finish, stability, and functionality. In this review, we introduce and review the recent developments in novel materials and 3D printing techniques to address the needs of the conventional 3D printing methodologies, especially in biomedical applications, such as printing speed, cell growth feasibility, and complex shape achievement. A comparative study of these materials and technologies with respect to the 3D printing parameters will be provided for selecting a suitable application-based 3D printing methodology. Discussion of the prospects of 3D printing materials and technologies will be finally covered.
引用
收藏
页码:2930 / 2950
页数:21
相关论文
共 50 条
  • [1] 3D printing in biomedical engineering: Processes, materials, and applications
    Lai, Jiahui
    Wang, Chong
    Wang, Min
    APPLIED PHYSICS REVIEWS, 2021, 8 (02)
  • [2] 3D printing biomimetic materials and structures for biomedical applications
    Yizhen Zhu
    Dylan Joralmon
    Weitong Shan
    Yiyu Chen
    Jiahui Rong
    Hanyu Zhao
    Siqi Xiao
    Xiangjia Li
    Bio-Design and Manufacturing, 2021, 4 : 405 - 428
  • [3] 3D printing biomimetic materials and structures for biomedical applications
    Yizhen Zhu
    Dylan Joralmon
    Weitong Shan
    Yiyu Chen
    Jiahui Rong
    Hanyu Zhao
    Siqi Xiao
    Xiangjia Li
    Bio-Design and Manufacturing , 2021, (02) : 405 - 428
  • [4] 3D printing biomimetic materials and structures for biomedical applications
    Zhu, Yizhen
    Joralmon, Dylan
    Shan, Weitong
    Chen, Yiyu
    Rong, Jiahui
    Zhao, Hanyu
    Xiao, Siqi
    Li, Xiangjia
    BIO-DESIGN AND MANUFACTURING, 2021, 4 (02) : 405 - 428
  • [5] 3D printing biomimetic materials and structures for biomedical applications
    Yizhen Zhu
    Dylan Joralmon
    Weitong Shan
    Yiyu Chen
    Jiahui Rong
    Hanyu Zhao
    Siqi Xiao
    Xiangjia Li
    Bio-Design and Manufacturing, 2021, 4 (02) : 405 - 428
  • [6] Recent progress in 3D printing piezoelectric materials for biomedical applications
    Zeng, Yushun
    Jiang, Laiming
    He, Qingqing
    Wodnicki, Robert
    Yang, Yang
    Chen, Yong
    Zhou, Qifa
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (01)
  • [7] 3D printing of biomedical materials and devices
    Bandyopadhyay, Amit
    Ghosh, Sourabh
    Boccaccini, Aldo R.
    BosenAff, Susmita
    JOURNAL OF MATERIALS RESEARCH, 2021, 36 (19) : 3713 - 3724
  • [8] 3D printing of biomedical materials and devices
    Amit Bandyopadhyay
    Sourabh Ghosh
    Aldo R. Boccaccini
    Susmita Bose
    Journal of Materials Research, 2021, 36 : 3713 - 3724
  • [9] Reinforced 3D printing for biomedical applications
    Winkless, Laurie
    MATERIALS TODAY, 2015, 18 (01) : 6 - 7
  • [10] 3D Bioprinting: Printing To Biomedical Applications
    Deodhar, Neha
    Jha, Rakesh Kumar
    Jha, Roshan Kumar
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2021, 14 (06): : 293 - 297