Lightweight and Efficient YOLOv8 With Residual Attention Mechanism for Precise Leukemia Detection and Classification

被引:0
|
作者
Prakash, Kavya Dasaramoole [1 ]
Khan, Junaid [2 ,3 ]
Kim, Kyungsup [1 ,2 ]
机构
[1] Chungnam Natl Univ, Dept Comp Engn, Daejeon 34134, South Korea
[2] Chungnam Natl Univ, Dept Environm & IT Engn, Daejeon 34134, South Korea
[3] Samsung Heavy Ind, Autonomous Ship Res Ctr, Daejeon 34051, South Korea
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Accuracy; Blood; Computer architecture; Feature extraction; YOLO; Microprocessors; Deep learning; Support vector machines; Convolutional neural networks; Real-time systems; Cancer; DWSCNN; object detection; leukemia detection; RCBAM; YOLOv8;
D O I
10.1109/ACCESS.2024.3484933
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Leukemia, defined by the abnormal growth of white blood cells, poses diagnostic difficulties due to its diverse symptoms and swift progression. Timely and precise detection is vital for effective treatment and better patient outcomes. This paper introduces a novel lightweight YOLOv8 model, integrated with a residual attention mechanism, aimed at improving leukemia detection and classification. Enhancements to the YOLOv8n architecture include Depthwise Separable Convolution (DWSCNN) and Residual Convolution Block Attention Mechanism (RCBAM) layers, which strengthen feature extraction and contextual information gathering. Trained on a comprehensive dataset of blood cell images annotated for various leukemia stages: benign, malignant-early, malignant-pre, and malignant-pro, the model employs noteworthy results, achieving the mAP of 98.4%, F1-score of 96.2%, and an inference speed of 3.5 milliseconds, significantly surpassing traditional YOLOv8 variants and other leading techniques. The proposed model not only improves diagnostic precision but also minimizes computational requirements, making it suitable for use in clinical settings, especially where resources are limited. By enabling early and precise detection of leukemia, this model holds promise for advancing treatment strategies and improving patient outcomes, paving the way for future innovations in medical imaging and automated disease diagnosis.
引用
收藏
页码:159395 / 159413
页数:19
相关论文
共 50 条
  • [1] A lightweight YOLOv8 based on attention mechanism for mango pest and disease detection
    Wang, Jiao
    Wang, Junping
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (04)
  • [2] A Lightweight Rice Pest Detection Algorithm Using Improved Attention Mechanism and YOLOv8
    Yin, Jianjun
    Huang, Pengfei
    Xiao, Deqin
    Zhang, Bin
    AGRICULTURE-BASEL, 2024, 14 (07):
  • [3] A Lightweight underwater detector enhanced by Attention mechanism, GSConv and WIoU on YOLOv8
    Cai, Shaobin
    Zhang, Xiangkui
    Mo, Yuchang
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [4] Lightweight YOLOv8 for Wheat Head Detection
    Fang, Chen
    Yang, Xiang
    IEEE ACCESS, 2024, 12 : 66214 - 66222
  • [5] A Lightweight YOLOv8 Tomato Detection Algorithm Combining Feature Enhancement and Attention
    Yang, Guoliang
    Wang, Jixiang
    Nie, Ziling
    Yang, Hao
    Yu, Shuaiying
    AGRONOMY-BASEL, 2023, 13 (07):
  • [6] Safety Helmet Detection: Adding Attention Mechanism to Yolov8 to Improve Detection Accuracy
    Dong, Zibo
    Zhang, Qi
    2024 7TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BIG DATA, ICAIBD 2024, 2024, : 448 - 454
  • [7] EDGS-YOLOv8: An Improved YOLOv8 Lightweight UAV Detection Model
    Huang, Min
    Mi, Wenkai
    Wang, Yuming
    DRONES, 2024, 8 (07)
  • [8] LAYN: Lightweight Multi-Scale Attention YOLOv8 Network for Small Object Detection
    Ma, Songzhe
    Lu, Huimin
    Liu, Jie
    Zhu, Yungang
    Sang, Pengcheng
    IEEE ACCESS, 2024, 12 : 29294 - 29307
  • [9] Helmet detection algorithm based on lightweight improved YOLOv8
    Wang, Maoli
    Qiu, Haitao
    Wang, Jiarui
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (01)
  • [10] Improved YOLOv8 Model for Lightweight Pigeon Egg Detection
    Jiang, Tao
    Zhou, Jie
    Xie, Binbin
    Liu, Longshen
    Ji, Chengyue
    Liu, Yao
    Liu, Binghan
    Zhang, Bo
    ANIMALS, 2024, 14 (08):