Shear stress and interlaminar shear strength tests of cross-laminated timber beams

被引:0
|
作者
Lu Y. [1 ]
Xie W. [1 ]
Wang Z. [1 ]
Gao Z. [1 ]
机构
[1] College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu
来源
BioResources | 2019年 / 13卷 / 03期
关键词
Cross-laminated timber; Interlaminar shear strength; Interlaminar shear stress; Test;
D O I
10.15376/biores.13.3.5343-5359
中图分类号
学科分类号
摘要
The interlaminar shear stresses of the three-layer, five-layer, and sevenlayer cross laminated timber (CLT) and those of the oriented laminated beams were calculated according to Hooke's law and the differential relationship between the beam bending moment and shear force. The interlaminar and maximum shear stresses of the CLT beam are related to the number of CLT layers and to the elastic modulus ratio EL/ET (or EL/ER) of the parallel and perpendicular layers. The interlaminar shear strength of the Hemlock CLT was positively correlated with the elastic modulus of its parallel layer. The results showed that the CLT short-span beams had three failure modes when subjected to a three-point bending test, namely perpendicular layer rolling shear failure, CLT interlaminar shear failure, and parallel layer bending failure. The shear stress of the oriented laminated beam followed a parabolic distribution along the height of the section, while the shear stress of the orthogonally laminated beams tended to be balanced, rather than parabolically distributed along the height of section. The short beam three-point bending method was able to effectively test the interlaminar shear strength of CLT due to its stable and readable load. © 2018, BioResources.
引用
收藏
页码:5343 / 5359
页数:16
相关论文
共 50 条
  • [31] Experimental investigation on the influence of lamination aspect ratios on rolling shear strength of cross-laminated timber
    Sun, Xiaofeng
    He, Minjuan
    Li, Zheng
    ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2021, 22 (01)
  • [32] Shear behavior of cross-laminated timber wall consisting of small panels
    Oh, Jung-Kwon
    Hong, Jung-Pyo
    Kim, Chul-Ki
    Pang, Sung-Jun
    Lee, Sang-Joon
    Lee, Jun-Jae
    JOURNAL OF WOOD SCIENCE, 2017, 63 (01) : 45 - 55
  • [33] Evaluation of the Out-of-Plane Shear Properties of Cross-Laminated Timber
    Yang, Yin
    Cau, Xiaoyan
    Wang, Zhiqiang
    Liang, Zhijun
    Zhou, Jianhui
    JOURNAL OF RENEWABLE MATERIALS, 2019, 7 (10) : 957 - 965
  • [34] Simple cross-laminated timber shear connections with spatially arranged screws
    Loss, Cristiano
    Hossain, Afrin
    Tannert, Thomas
    ENGINEERING STRUCTURES, 2018, 173 : 340 - 356
  • [35] Bending and shear performance of Australian Radiata pine cross-laminated timber
    Navaratnam, S.
    Christopher, P. B.
    Ngo, T.
    Le, T. V.
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 232
  • [36] Force Transfer around Openings in Cross-Laminated Timber Shear Walls
    Pai, Sai Ganesh S.
    Lam, Frank
    Haukaas, Terje
    JOURNAL OF STRUCTURAL ENGINEERING, 2017, 143 (04)
  • [37] Shear behavior of cross-laminated timber wall consisting of small panels
    Jung-Kwon Oh
    Jung-Pyo Hong
    Chul-Ki Kim
    Sung-Jun Pang
    Sang-Joon Lee
    Jun-Jae Lee
    Journal of Wood Science, 2017, 63 : 45 - 55
  • [38] SHEAR-STRENGTH OF SPRUCE GLUED LAMINATED TIMBER BEAMS
    KEENAN, FJ
    KRYLA, J
    KYOKONG, B
    CANADIAN JOURNAL OF CIVIL ENGINEERING, 1985, 12 (03) : 661 - 672
  • [39] Cross Laminated Timber (CLT) Beams Loaded in Plane: Testing Stiffness and Shear Strength
    Boggian, Francesco
    Andreolli, Mauro
    Tomasi, Roberto
    FRONTIERS IN BUILT ENVIRONMENT, 2019, 5
  • [40] Lateral-Load Resistance of Cross-Laminated Timber Shear Walls
    Reynolds, Thomas
    Foster, Robert
    Bregulla, Julie
    Chang, Wen-Shao
    Harris, Richard
    Ramage, Michael
    JOURNAL OF STRUCTURAL ENGINEERING, 2017, 143 (12)